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Counterion condensation and fluctuation-induced attraction
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We consider an overall neutral system consisting of two similarly charged plates and their oppositely
charged counterions and analyze the electrostatic interaction between the two surfaces beyond the mean-field
Poisson-Boltzmann approximation. Our physical picture is based on the fluctuation-driven counterion conden-
sation model, in which a fraction of the counterions is allowed to ‘‘condense’’ onto the charged plates. In
addition, an expression for the pressure is derived, which includes fluctuation contributions of the whole
system. We find that for sufficiently high surface charges, the distance at which the attraction, arising from
charge fluctuations, starts to dominate can be large compared to the Gouy-Chapmann length. We also demon-
strate that depending on the valency, the system may exhibit a first-order binding transition at short distances.
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I. INTRODUCTION

Correlation effects may play an important role in contr
ling the structure and phase behavior of highly charged m
roions in solutions@1#. The macroions may be charged mem
branes, stiff polyelectrolytes such as DNA, or charg
colloidal particles. Recently, these effects have attracte
great deal of attention, since they may drastically alter
standard mean-field Poisson-Boltzmann~PB! picture @2–6#.
For example, one surprising phenomenon is theattraction
between two highly charged macroions, as observed in
periments@7–9# and in simulations@10–12#. This attraction
is not contained in the mean-field~PB! theory, even for an
idealized system of two charged planar surfaces. Indee
has been proven that PB theory predicts only repulsion
tween like-charged macroions@13#.

Very recently, another interesting effect that is not ca
tured within the PB theory is predicted, namely, t
fluctuation-driven counterion condensation@14#. For a sys-
tem consisting of a single charged surface and its oppos
charged counterions, Netz and Orland@5# showed that a
simple perturbative expansion about the mean-field PB s
tion breaks down for sufficiently high surface charge. Th
in this limit, fluctuation and correlation corrections can b
come so large that the solution to the PB equation is
longer a good approximation. To circumvent this difficulty
two-fluid model was proposed in Ref.@14#, in which the
counterions are divided into afreeand acondensedfraction.
The free counterions have the usual three-dimensional~3D!
mean-field spatial distribution, while thecondensedcounte-
rions are confined to move only on the charged surface
thus effectively reduce its surface charge density. The n
ber of condensed counterions is determined self-consiste
by minimizing the total free energy which includesfluctua-
tion contributions. This theory predicts that if surface cha
density of the plate is sufficiently high, a large fraction
counterions is ‘‘condensed’’ via a phase transition, similar
the liquid-gas transition with a line of first-order phase tra
sitions terminating at the critical point. Furthermore, the v
lence of the counterions plays a crucial role in determin
the nature of the condensation transition. The phys
mechanism leading to this counterion condensation is
1063-651X/2002/66~4!/041501~14!/$20.00 66 0415
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additional binding arising from 2D charge fluctuation
which dominate the system at high surface charge. In
paper, we extend this condensation picture to a system of
charged surfaces with their neutralizing counterions, and
study the electrostatic interaction between them.

Previous theoretical approaches to the problem of the
traction in charged surfaces include both numerical and a
lytical methods that go beyond the mean-field PB theo
Gulbrandet al. @10# provided the first convincing demonstra
tion for the attraction between highly charged walls usi
Monte Carlo simulations. In particular, they showed that
divalentcounterions, the pressure between charged walls
comes negative for distances less than 10 Å; hence, the
istence of short-ranged attraction. Subsequently, there h
been a number of numerical studies based on the hypern
chain integral equation@15# and the local density-functiona
theory @16#, as well as analytic perturbative expansio
around the PB solution@17# that demonstrates attraction.

More recently, motivated by the problems of DNA co
densation and membrane adhesion, two distinct approa
have been proposed to account for the attraction arising f
correlations@2–4#. The first approach is based on ‘‘struc
tural’’ correlations first proposed by Rouzina and Bloomfie
@2#; the attraction comes from the ground state configurat
of the ‘‘condensed’’ counterions. This theory predicts
strong short-ranged attraction, with the characteristic len
set by the lattice constant, typically of the order of few an
stroms. In the other approach, based on charge fluctuati
the counterion fluctuations are approximated by the
Debye-Hückel theory, which predicts a long-ranged attra
tion which scales with the interplanar distance asd23. Note,
however, that the mean-field PB repulsion which scales
d22 always dominates the attraction for large distances,
thus, the range of the attraction in this picture is still sho
typically of the order of 10 Å@18,19#. Despite the fact that
some conceptual issues have been resolved concerning
crossover of the attractions from long ranged to short ran
@20,21#, there remain some interesting problems to be und
stood. In particular, some experimental observations in p
nar surfaces@8# and in charged colloidal suspensions@9# as
well as computer simulations@12# provide evidence for a
long-ranged attraction, typically of the order of micron
©2002 The American Physical Society01-1



on
th
io

t-
ha

D
n

o

a
b
te
ium
of

e
th
th

f t
y
on
tio
n
u
c
n
s
tin
er
e

th
th

nc
a-

rd
w

e
te
a
, r
ce
u
d

n
ti
ce
lly
in
t

fly
th
th
ta

is
r-
in

the

rion

n
thin
is
sity

di-

ty

nto
hly
-
no

e

s
n-
the
unit
face

s,
t

om
i-

A. W. C. LAU AND P. PINCUS PHYSICAL REVIEW E66, 041501 ~2002!
whereas the two mechanisms mentioned above give
short-ranged attraction. In this paper, we show that
charge-fluctuation approach, together with the counter
condensation mechanism@14#, can induce long-ranged a
tractions for sufficiently high surface charge. We note t
other mechanisms based on hydrodynamic interactions@22#,
depletion effects@23#, and an exact calculation for the 2
plasma model@24# have been proposed recently to accou
for the long-ranged attractions.

In particular, we study the interaction between tw
charged surfaces separated by a distanced, with counterions
distributed both inside and outside of the gap. This bound
condition, as opposed to all of the counterions confined
tween the gap, is more appropriate in general, since sys
are not closed and often the counterions are in equilibr
with a ‘‘bath’’ in surface forces experiments. In the spirit
the ‘‘two-fluid’’ model proposed in Ref.@14#, we divide the
counterions into a ‘‘condensed’’ and a ‘‘free’’ fraction. Th
condensed counterions are allowed to move only on
charged surfaces, while the free counterions distribute in
space inside and outside the gap. The surface density o
condensed counterionnc on each plate is determined b
minimizing the total free energy, which includes fluctuati
contributions. Furthermore, an expression for the fluctua
pressure is derived, which includes fluctuation contributio
from the condensed and ‘‘free’’ counterions, and their co
plings. We find that the counterion condensation can oc
either by increasing surface charge density at a fixed dista
or by decreasing the separation between plates. For low
face charge, the counterion condensation proceeds con
ously as a function of distance with the fraction of count
ion condensed being small but finite, and the total pressur
the system remains repulsive.

For higher surface charges, the qualitative behavior of
counterion condensation transition depends critically on
valenceZ of the counterions. ForZ,2, the counterion con-
densation proceeds continuously as a function of dista
However, forZ>2, the behavior of the system is qualit
tively different, similar to an isolated charged plate@14#. In
this case, the counterion condensation occurs via a first-o
phase transition as a function of distance. Remarkably,
find that for trivalent (Z53) counterions, there is a wid
range in the surface density, in which the first-order coun
ion condensation spontaneously takes the system from
pulsive regime to an attractive regime at short distances
sulting in a first-order binding transition. For high surfa
charge, counterion condensation again proceeds continuo
even forZ>2, but with a significant number of condense
counterions. Thus, in this regime, the mean-field repulsio
substantially reduced and the long-ranged charge-fluctua
attraction dominates the system even for large distan
Note, however, that the mean-field repulsion will eventua
dominate asd→`. We emphasize that all these features,
particular the special role of the valence, deviate significan
from the PB mean-field predictions.

This paper is organized as follows. In Sec. II, we brie
recapitulate qualitatively the mechanism which drives
counterion condensation. In Sec. III, we present in detail
two-fluid model and derive a general expression for the to
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free energy of the counterions. In Sec. IV, we apply th
formalism to study the interaction of similarly charged su
faces. A detailed discussion of our results is presented
Sec. V.

II. COUNTERION CONDENSATION:
QUALITATIVE ARGUMENT

In this section, we recapitulate the essential physics of
condensation transition presented in Ref.@14#. Recall that for
a single plate of charge densitys(x)5en0d(z) immersed in
an aqueous solution of dielectric constante, containing op-
positely charged2Ze pointlike counterions of valenceZ on
both sides of the plate, PB theory predicts that the counte
distribution @25#

r0~z!5
1

2pZ2l B~ uzu1l!2 ~1!

decays to zero algebraically with a characteristic lengthl
[1/(p l BZn0), where l B[e2/ekBT'7 Å is the Bjerrum
length in water at room temperature,kB is the Boltzmann
constant, andT is the temperature. This Gouy-Chapma
length l defines a sheath near the charged surface wi
which most of the counterions are confined. Typically, it
on the order of few angstroms for a moderate charge den
of n0;1/100 Å22. Note that sincel scales inversely with
n0 and linearly withT, at sufficiently high density or low
temperature, the counterion distribution is essentially two
mensional. In fact, in the limitT→0, we have

lim
T→0

E
2z

z

r0~z!dz5 lim
T→0

2
n0

2Z

z

l1z
5

n0

Z
, ~2!

wherez is an arbitrarily small but fixed positive value ofz,
i.e., the counterion profiler0(z) reduces to a surface densi
coating the charged plane with a density ofn0 /Z. Therefore,
according to PB theory, all of the counterions collapse o
the charged plane at zero temperature. However, for hig
charged surfacesZ2l B@l, the fluctuation corrections be
come so large that the solution to the PB equation is
longer valid @5#. To capture this regime in the spirit of th
‘‘two-fluid’’ model @14#, we divide the counterions into a
‘‘free’’ and a condensate fraction. The ‘‘free’’ counterion
have the usual PB 3D spatial distribution, while the ‘‘co
densed’’ counterions are confined to move only on
charged plane, as shown in Fig. 1. The free energy per
area for the condensed counterions with an average sur
densitync can be written as@26#

b f 2D~nc!5nc$ ln@nc a2#21%

1
1

2E d2q

~2p!2 H lnF11
1

qlD
G2

1

qlD
J , ~3!

whereb215kBT, a is the molecular size of the counterion
and lD51/(2pZ2nc) is the 2D screening length. The firs
term in Eq.~3! is the entropy and the second term arises fr
the 2D fluctuations. Note that the latter term is logarithm
1-2



pi

ge
om
e
t

e

un
b

n
ly-

s

ra

-

ol

ou
a

of

-
face
e

is
t-
a

n
ave
t

l to
ed

-
and

to

on
or-
an
ces.
that
out
s
n.
ore

es,

te-
ce
den-
-

yti-
.
a
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cally divergent, which may be regularized by a microsco
cutoff ;a, yielding bD f 2D(nc).21/(8plD

2 )ln(2plD /a).
In addition, the condensate partially neutralizes the char
plane, effectively reducing its surface charge density fr
en0 to enR5en02Zenc . Thus, motivated by PB theory, th
free counterions can be modeled as an ideal gas confined
slab of thicknesslR[1/(p l BZnR) with a 3D concentration
of c5nR /(ZlR). The fluctuation free energy in this cas
may be estimated using the 3D Debye-Hu¨ckel theory:bD f
52ks

3/(12p) @27#, where ks
254pZ2l Bc is the inverse

square of the 3D screening length. The free energy per
area of the free counterions is then approximately given

b f 3D~nc!'c lR$ ln@c a3#21%2
ks

3

12p
lR . ~4!

All the qualitative results, including the nature of the co
densation transition, follow straightforwardly from the ana
sis of the total free energy:f (nc)5 f 2D(nc)1 f 3D(nc); mini-
mizing f (nc) to find the fraction of condensed counterion
nc , we obtain

ln F t

~12t!2ug
G1

4

3
g~12t!2tg lnS p

tugD51, ~5!

where the three dimensionless parameters: the order pa
etert[Znc /n0, the coupling constantg[Z2l B /l, ~wherel
is the bare Gouy-Chapmann length!, and the reduced tem
peratureu[a/Z2l B , completely determine the equilibrium
state of the system. It is easy to derive the asymptotic s
tions of the last equation corresponding to the free,t1!1,
and condensed,t2'1, state of the counterions:t1
.g u exp@124

3 g#, and t2.12@p exp(1)#21/2(gu/p)(g21)/2,
respectively. For weak couplingsg!1, t1 is the only con-
sistent solution. Thus, there are almost no condensed c
terions t!1. This is not surprising since PB theory is

FIG. 1. The geometry of the problem.
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weak-coupling theory which becomes exact in the limitT
→`. However, for high surface chargeg@1, where corre-
lation effects becomes important, the behavior oft depends
crucially onu. In particular, foru,uc'0.038,t1 andt2 are
both consistent solutions corresponding to the two minima
f, and thus a first-order transition takes place whenf (t1)
5 f (t2), in which a large fraction of conterions is con
densed. This occurs at a particular value of the bare sur
charge density such thatg5g0(u). For an estimate, we tak
u50.02 ~divalent counterions at room temperature! and ob-
tain g0;1.7, corresponding tosc;e/10 nm22. However,
for u.uc the behavior oft is completely different; in this
regime, there isno phase transitionand the condensation
occurs continuously. Thus, the condensation transition
similar to the liquid-gas transition, which has a line of firs
order transitions terminating at the critical point where
second-ordertransition occurs. If one takesl B;10 Å, e.g.,
room temperature, anda;1 Å, it follows from the definition
of u that there is a critical value of counterion valenceZc

5Aa/( l Buc).1.62, below which no first-order condensatio
transition is possible. Therefore, divalent counterions beh
qualitatively differently from monovalent counterions a
room temperature.

Clearly, this condensation picture may also be crucia
understanding the attraction between two similarly charg
plates, separated by a distanced. Recall that the total pres
sure of this system comprises the mean-field repulsion
the correlated fluctuation attraction@4#. The repulsion comes
solely from the ideal gas entropy and it is proportional
the concentration at the midplane:P0(d)5kBTr0(0)
58kBT/(,BlR

2) for d,lR @28#, where ,B54pZ2l B. The
fluctuation-induced attraction isP(d)52a0 kBT/d3 for d
.lD , wherea0'0.048 @4#. Clearly, when a large fraction
of the counterions is ‘‘condensed,’’ the mean-field repulsi
is greatly reduced. Therefore, the attraction arising from c
related fluctuations of the ‘‘condensed’’ counterions c
overcome the mean-field repulsion even for large distan
Using the estimates in the last paragraph above, we find
for divalentcounterions and surface charge density of ab
one unit charge perS;7 nm2, the total pressure become
attractive at aboutd;10 nm; hence a long-ranged attractio
Of course, this estimate should be supplemented by a m
precise calculation for the system of two charged plat
which is done below.

III. COUNTERION FREE ENERGY IN THE
‘‘TWO-FLUID’’ MODEL

Consider an overall neutral system consisting of coun
rions and two charged surfaces separated by a distand
immersed in an aqueous solution. The surface charged
sity on each plate iss05en0. We model the aqueous solu
tion with a uniform dielectric constante. This simplification
allows us to study fluctuation and correlation effects anal
cally. In the spirit of the ‘‘two-fluid’’ model proposed in Ref
@14#, we divide the counterions into a ‘‘condensed’’ and
1-3
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‘‘free’’ fraction. The condensed counterions are allowed
move only on the charged surfaces, while the free count
ons distribute in the space inside and outside the gap.
number of the condensed counterions,nc , on each plate is
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determined by minimizing the total free energy includin
fluctuation contributions. Thus, our first task is to derive
expression for the total free energy of the system. The e
trostatic free energy for the whole system may be written
bFel5(
i
E d2r nc

i ~r !$ ln@nc
i ~r !a2#21%1E d3xr~x!$ ln@r~x!a3#21%

1
Z2l B

2 (
i j

E d3xE d3x8
nc

i ~r !d~z2zi ! nc
j ~r 8!d~z2zj !

ux2x8u
1

Z2l B

2 E d3xE d3x8
r~x!r~x8!

ux2x8u

1ZlB(
i
E d3xE d3x8

nc
i ~r !d~z2zi !@Zr~x8!2nf~x8!#

ux2x8u
2ZlBE d3xE d3x8

r~x! nf~x8!

ux2x8u

1
l B

2 E d3xE d3x8
nf~x!nf~x8!

ux2x8u
, ~6!
r
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where a is the molecular size of the counterions,l B
5e2/(ekBT) is the Bjerrum length,Z is the valence of the
counterions, andz152d/2 andz25d/2 are the locations o
the charged surfaces. The first two terms in Eq.~6! are the
two-dimensional entropy for the condensate and thr
dimensional entropy for the ‘‘free’’ counterions, respective
and the rest represent the electrostatic interactions of c
terions in the system. In Eq.~6!, the condensed counterion
two-dimensional density on thei th plate is denoted bync

i (r ),
the ‘‘free’’ counterions with 3D density byr(x), and the
external fixed charges arising from the surfaces bynf(x)
5n0d(z2d/2)1n0d(z1d/2). Within the Gaussian fluctua
tion approximation, we assume that the 2D density of c
densed counterions has a spatially dependent fluctua
about a uniform mean:nc

i (r )5nc1dnc
i (r ), and expand Eq

~6! to second order indnc
i (r ). Summing over all the 2D

fluctuations of the condensed counterions, i.e.,

e2bHe5E Ddnc
A~r !Ddnc

B~r !e2bFel,

we obtain two terms in the effective free energy:He5F2D
1H3D . The first termF2D is the free energy associated wi
the condensed counterions which can be written as

bF2D52nc$ ln@nc a2#21%A1
1

2
ln detK̂2D2

1

2
ln det

@2¹x
2#, ~7!

where K̂2D(x,y)[@2¹x
21(2/lD)(6d(z6d/2)#d(x2y) is

the 2D Debye-Hu¨ckel operator andlD51/(2pZ2l Bnc) is the
Debye screening length in two dimensions. The first term
Eq. ~7! is the entropy and the second term arises from the
charge fluctuations. Note that although this fluctuation te
can be evaluated analytically@4#, we write it in this abstract
form for later convenience.
-
,
n-

-
on

n
D

The second termH3D is the electrostatic free energy fo
the ‘‘free’’ counterions, taking into account of the presence
the fluctuating condensate; to within an additive constan
may be written as

bH3D5E d3x r~x!$ ln @r~x!a3#21%

1
1

2E d3xE d3x8r~x!G2D~x,x8!r~x8!

2E d3x f~x! r~x!, ~8!

wheref(x)[*d3x8 Z21G2D(x,x8)nR(x8) is the ‘‘renormal-
ized’’ external field arising from the charged plate. From E
~8!, we can see that the presence of the condensate mod
the electrostatics of the free counterions in two ways. Fi
the condensate partially neutralizes the charged surfaces
fectively reducing the surface charge density fromen0 to
enR5e(n02Znc). Second, their fluctuations renormaliz
the electrostatic interaction of the system; thus, instead of
usual Coulomb potential, the free counterions and
charged surfaces interact via the interactionG2D(x,x8),
which is the inverse~the Green’s function! of the 2D Debye-
Hückel operatorK̂2D ,

F2¹x
21

2

lD
(
6

d~z6d/2!GG2D~x,x8!5,Bd~x2x8!,

~9!

where we have defined, for convenience, a reduced Bjer
length by,B[4pZ2l B . In Eq. ~9!, the second term in the
bracket takes into account the fluctuating ‘‘condensat
Hence, in the limitnc→0 or lD→`, G2D(x,x8) reduces to
the usual Coulomb interactionG0(x,x8)5,B /ux2x8u.
1-4
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After a Hubbard-Stratonovich transformation@29#, the
grand canonical partition function for the ‘‘free’’ counterion
characterized by the interaction energy in Eq.~8!, can be
mapped onto a functional integral representation:Zm@f#
5N0*Dce2S[c,f] with an action@30#

S@c,f#5E d3x

,B
H 1

2
c~x!@2¹2#c~x!2k2eic(x)1f(x)

1
1

lD
(
6

d~z6d/2!@c~x!#2J , ~10!

wherec(x) is the fluctuating field,k25em,B /a3, m is the
chemical potential, andN 0

22[detK̂2D is the normalization
factor. The minimum of the action, given b
dS/dc(x)uc5c0

50, defines the saddle-point equation f

c0(x),

2¹2@ ic0~x!#1
2

lD
(
6

d~z6d/2!@ ic0~x!#

1k2eic0(x)1f(x)50. ~11!

This saddle-point equation is equivalent to the PB equa
by defining the mean-field potentialw(x)52 ic0(x)
2f(x), which is solved below in Sec. IV. To obtain the fre
energy for the free counterions on the mean-field level,
note that it is related to the Gibbs potentialG0@f#
[S@c0 ,f# by a Legendre transformation,

bF3D
0 ~nR!5G0@f#1mE d3x r0~x!, ~12!

wherer0(x) is the mean-field free counterion density giv
by

r0~x!5~k2/,B!eic0(x)1f(x). ~13!

To capture correlation effects, we must also include fluct
tions of the ‘‘free’’ counterions, thereby treating the ‘‘free
and ‘‘condensed’’ counterions on the same level. To this e
we expand the actionS@c,f# about the saddle pointc0(x)
to second order inDc(x)5c(x)2c0(x),

S@f,c#5S@f,c0#1
1

2E d3xE d3yDc~x! K̂3D~x,y!Dc~y!

1•••,

where the differential operator

K̂3D~x,y![F2¹x
21

2

lD
(
6

d~z6d/2!1k2eic0(x)1f(x)G
3d~x2y! ~14!

is the second variation of the actionS@c,f#. Note that the
linear term inDc(x) does not contribute to the expansio
sincec0(x) satisfies the saddle-point equation Eq.~11!. Per-
forming the Gaussian integrals in the functional integral,
04150
n

e

-

d,

e

obtain an expression for the change in the free energy du
fluctuations of the free counterions,

bDF3D5
1

2
ln detK̂3D2

1

2
ln detK̂2D , ~15!

where the second term comes from the normalization fa
N0. Note that the second term in Eq.~15! partially cancels
the fluctuation contributions to the free energy of the co
densed counterions in Eq.~7!. Thus, combining Eqs.~7!,
~12!, and ~15! together, the total free energy of the syste
can be expressed as

bF~nc!52nc$ ln@nc a2#21%A1bF3D
0 ~nR!

1
1

2
ln detK̂3D2

1

2
ln det@2¹x

2#. ~16!

This is the main result of this paper, from which all th
equilibrium quantities can be calculated. It says that the f
energy of the counterions is simply a sum of the mean-fi
free energy and a fluctuation energy term. Note that the la
term contains couplings among the fluctuations of the f
and the condensed counterions. Finally, we stress that
derivation presented here is rather general and may app
other physical systems as well.

IV. INTERACTION BETWEEN TWO SIMILARLY
CHARGED SURFACES

In this section, we employ the framework of counterio
condensation derived in Sec. III to study the interaction
two charged surfaces with free counterions and conden
counterions fluctuating on each of them. In Sec. IV A,
expression is derived for the total pressure, which takes
account the total fluctuations of the counterions. In S
IV B, we discuss the behavior of the total pressure and
equilibrium state of the system as characterized by the f
tion of condensed counteriont which is determined by the
minimum of the total free energy Eq.~16!.

A. Mean-field theory and fluctuation corrections

The free counterion density on the mean-field level can
obtained by solving Eq.~11!. Defining the mean-field poten
tial by w(x)52 ic0(x)2f(x), the saddle-point equation
becomes

d2w~z!

dz2 1k2e2w(z)5
nR,B

Z (
6

d~z6d/2!

1
2

lD
(
6

d~z6d/2!w~z!, ~17!

whereenR5e(n02Znc) is the renormalizedsurface charge
density of the plates. Note that Eq.~17! looks similar to the
mean-field PB equation. Indeed, the solution to Eq.~17! is
exactly the same as the PB solution provided that we imp
the boundary conditionw(6d/2)50. The solution reads
1-5
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w,~z!5 ln
k2 cos2~az!

2 a2 , uzu<d/2, ~18!

w.~z!52 lnF11
k

A2
~ uzu2d/2!G , uzu>d/2, ~19!

and the counterion density is given by

r0e2w,(z)5~2a2/,B!sec2~az!, uzu<d/2, ~20!

r0e2w.(z)5
2/,B

~ uzu2d/21j!2
, uzu>d/2, ~21!

wherej[A2/k anda is determined from the boundary con
ditions on the electric field,]zw.ud/22]zw,ud/25nR,B /Z
andw(6 d/2)50; they lead to a transcendental equation
a,

alR tan~ad/2!512~alR/2!2, ~22!

wherelR54Z/(,BnR) is therenormalizedGouy-Chapmann
length. Physically,a2 is proportional to the free counterio
density at the midplaner0(0). In addition,k is related to the
zeros of the potential, i.e.,w(6 d/2)50,

k252a2 sec2~ad/2!52~11b2!2/lR
2 , ~23!

where we have definedb[alR/2. The asymptotic behavior
for b as determined by the relation Eq.~22! are b;1/d as
d→` andb;1 asd→0. We note that the latter behavior
distinct from the case of two impenetrable charged h
walls @25#.

The mean-field free energy per unit area for the free co
terions, i.e., the first two terms in Eq.~16!, can be easily
calculated by using Eq.~12!,

b f 052nc$ ln@nc a2#21%1
2nR

Z H lnS nRa3

2ZlR
D21J

1
4nR

Z
ln@11~alR/2!2#1

2a2d

,B
, ~24!

where we have made used of the fact that the chemical
tential is given bym5 ln(k2a3/,B). The first two terms in Eq.
~24! represent the entropy per unit area of condensed
free counterions, respectively. The last two terms desc
the interacting free energy for the surfaces. Using the gen
formula for the pressure,P0(d)52] f 0(d)/]d, we obtain
the mean-field pressure between the surfaces,P0(d)5
12a2/,B . We note that at the mean-field level, the press
comes solely from the ideal gas entropy of the ‘‘free’’ cou
terions, and it is proportional to their density at the midpla
a standard result. However, in contrast to the standard
theory, the pressure now depends on the order paramet
[Znc /n0. Thus, if there were a large fraction of condens
counterions,t.1, the mean-field repulsion would be dras
cally reduced.

Next, we compute the pressure arising from the coun
ion fluctuations. Recall that the expression for the chang
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the free energy arising from fluctuations of the counterion
given by the last two terms in Eq.~16!,

bDF5
1

2
ln detK̂3D2

1

2
ln det@2¹x

2#, ~25!

where the operatorsK̂3D is defined in Eq.~14! with

k2e2w(z)52a2 sec2~az!Q~z!1
2Q̃~z!

~ uzu2d/21j!2
, ~26!

wherej[lR /(11b2), Q(z)5u(z1d/2)2u(z2d/2)51, if
uzu<d/2 and zero, otherwise, andQ̃(z)512Q(z). The de-
rivative of DF with respect to distanced can be straightfor-
wardly calculated by making use of the exact identi
d ln detX̂5Tr X̂21dX̂,

]bD F
]d

5
1

2,B
E d3xG3D~x,x!

3
]

]d F 2

lD
(
6

d~z6d/2!1k2e2w(z)G , ~27!

where G3D(x,x8) is the Green’s function of the operato
K̂3D satisfying

F2¹x
21

2

lD
(
6

d~z6d/2!1k2e2w(z)GG3D~x,x8!

5,Bd~x2x8!. ~28!

An explicit derivation ofG3D(x,x8) and the pressure arisin
from fluctuations Eq.~27! are detailed in the Appendix. Th
final result for the pressure can be written as

bP~d!52
1

A
]D F
]d

52E d2q

~2p!2

qM 2~q!

12M 2~q!

2
a2

lR

~11b2!~I22I3!

21
d

lR
~11b2!

, ~29!

where M(q) is defined in Eq.~A14!, I2 and I3 are two
dimensionless integrals defined in the Appendix by E
~A30! and ~A31!, respectively.

We note that the fluctuation pressure is purely attracti
thus, fluctuations lower the free energy. Although the expr
sion Eq.~29! looks complicated, each term, however, has
simple physical interpretation. The first term in Eq.~29! is
the pressure arising from counterion fluctuations near
surfaces. In fact, if all of the counterions are condensedt
51, we observe thatM(q) in Eq. ~A14! becomesM(q)
52e2qd/(11qlD) and that the only contribution to th
pressure in Eq.~29! is the first term, which becomes in thi
limit
1-6
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bP~d!52E d2q

~2p!2

q

e2qd~11qlD!221
. ~30!

This expression is exactly the pressure derived in Ref.@4#,
arising from 2D fluctuations of the counterions. It scales l
P(d);21/d3 for large distances.

The second term in Eq.~29! may be interpreted as th
coupling between the counterions near the surfaces and t
in the bulk. This can be seen by considering the asympt
behavior of the pressure for larged in the no condensate
limit t50, i.e., the fluctuation corrections to the PB pre
sure. In this case, in addition to the usuald23 scaling law
arising from counterion fluctuations near the surfaces,
second term in Eq.~29! contributes a term, which scales a
;d23ln(d/l) in the larged limit. Therefore, the pressure

P~d!;2
1

d3 2
1

d3 ln~d/l! ~31!

contains a logarithmic term, which dominates thed23 term
for large distances. This term has been obtained by sev
authors previously@17,18# and, in particular, Ref.@18# shows
that this term arises physically from the coupling betwe
counterions near the surfaces and those in the bulk. Th
fore, Eq. ~29! recovers the PB limitt50 and the 2D limit
t51 as special cases. Although the fluctuation correction
the PB (t50) pressure have been considered previously,
stress that Eq.~29! is a generalization which allows for coun
terion condensation and may apply to other physical sit
tions, such as ions absorption.

Combining with the mean-field pressure, we obtain
total pressure

bP tot~d!5
2a2

,B H 12
,B

8plR

~11b2!~I22I3!

21
d

lR
~11b2! J

2E d2q

~2p!2

qM 2~q!

12M 2~q!
. ~32!

The behavior of the total pressure depends on the coup
constantg[Z2l B /l and the fraction of condensed counte
onst[Znc /n0. For g!1 andt!1, the fluctuation correc-
tions are small and the total pressureP tot(d) is controlled by
the mean-field repulsion. However, fort;1 the mean-field
repulsion is greatly reduced and the fluctuation attraction
overcome the repulsion at finite distances. Furthermore,
g;1 the short distance behavior is highly sensitive tot.
Even a very small number of condensed counterions wo
turn the total pressure, otherwise repulsive fort50, into
attractive for short distances. Forg@1, the fluctuation at-
traction becomes dominant at short distances even w
there is no condensate, and the effect of finitet is to push the
attractive region out to a larger length scale. Hence, if th
is sufficient number of condensed counterions, the pres
is attractive even for large distances. Our next task is
determine the fraction of condensed counterionst as deter-
mined by the minimum of the total free energy.
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B. Equilibrium properties

The equilibrium state of the system is determined
minimizing the total free energy with respect to the ord
parametert. Therefore, we need to evaluate the derivative
the total free energy Eq.~16! with respect tot. Let us first
consider the mean-field contribution. Explicitly differentia
ing Eq. ~24!, we obtain

]b f 0

]t
5

2n0

Z
ln~2l/a!2

2n0

Z
1

2n0

Z
ln

t

~12t!2

2
2n0

Z
ln@11b2#, ~33!

wherel54Z/(,Bn0) is the ‘‘bare’’ Gouy-Chapman length
To obtain the fluctuation contributions, we again make use
the exact identity:d ln detX̂5Tr X̂21dX̂ to evaluate the de-
rivative of the fluctuation free energy in Eq.~25!,

]bD F
]t

5
1

2,B
E d3xG3D~x,x!

3
]

]t F 2

lD
(
6

d~z6d/2!1k2e2w(z)G . ~34!

This expression can be explicitly evaluated using sim
techniques outlined in the Appendix and the result is giv
by

1

A
]bDF

]t
5

4~12t!

l2 F 1

2
I11

11b2

2
I31

2b2~I22I3!

21
d

lR
~11b2!G ,

~35!

whereI2 andI3 are given in Eqs.~A30! and~A31!, respec-
tively, andI1 is defined by

I1@d/lR#[E d2q

~2p!2

4plR

2q
@G~d/2!211L~q!#, ~36!

where L(q) and G(d/2) are defined by Eqs.~A18! and
~A19!, respectively, in the Appendix. Note thatI1@d/lR# is
logarithmically divergent@see Appendix, Eq.~A34!#, as in
the case for 2D Debye-Huckel theory, which may be reg
larized by a microscopic cutoff, chosen to be the size of
counteriona. Finally, using Eqs.~33! and ~35!, the root of
the free energy]F(t)/]t50 can be determined numerically
For example, the case of an isolated charged plate ca
obtained by taking the limitd→` in Eqs. ~33! and ~35!,
which leads to the following transcendental equation:

11 ln~gu/2!1 ln
~12t!2

t

1gE
0

xc
xdx

112g~11x!

~11x!@11~g1x!~11x!#
50, ~37!
1-7
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A. W. C. LAU AND P. PINCUS PHYSICAL REVIEW E66, 041501 ~2002!
where xc52p/(12t)gu is the microscopic cutoff. The
analysis of this equation gives all the features mentione
Sec. II. As a consistency check, it can be verified that in
limit d→0, Eq.~35! gives the fluctuation free energy for a
isolated charged surface but with twice of the surface cha
density 2en0.

V. RESULTS AND DISCUSSION

Let us first discuss the behavior of the order parametet
at a fixed separationd between the charged surfaces, as su
marized in Fig. 2. The behavior oft as a functiong at a finite
distanced is qualitatively identical to the case of infinit
separation. For weak couplingsg!1, there is a small bu
finite number of condensed counterions but the total pres
remains repulsive. For sufficiently highg;1, the condensa
tion proceeds continuously foru.uc and via a first-order
phase transition foru,uc at a particular value of the cou
pling constantg0(d,u). We note that in this regime, th
number of counterion condensation becomes signific
This implies that the mean-field repulsion is drastically
duced and the correlated attractions can overcome the re
sion at a finite distance. Foru;0.02, roughly corresponding
to divalent counterions at room temperature, we find that
onset of the attraction occurs atg;1.6 or surface charge o
about one charge per 10 nm2 at a distanced51.5l;40 Å.
These numbers are order of magnitude consistent with c
puter simulations@10#.

Next, we discuss counterion condensation and the t
pressure of system as a function of distance. Note that
scenario is more physically relevant, since surface force
periments usually vary the distance between charged
faces rather than changing their surface charge densities
low surface chargesg!1, as shown in Fig. 3, the counterio
condensation is continuous as a function of separation

FIG. 2. The fraction of condensed counterionst[Znc /n0 as a
function of g[Z2l B /l for different values ofu5a/Z2l B . At low
surface chargeg!1, the counterion distribution is well describe
by PB theory sincet!1. However, at high surface charge, corr
lation effects lead to a large fraction of condensed counterions.
condensation is first order foru,uc and continuous foru.uc . The
critical point is atuc;0.017,gc;1.23, andtc;0.43.
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the fraction of condensed counterions remains small bu
nite. We note thatt generally increases as the distance of t
surfaces decreases, but remains fairly constant up tol. This
is not surprising since there is an entropy loss of the f
counterions due to confinement. However, the pressure
mains repulsive and shows little difference from the PB pr
sure profile, as expected.

For sufficiently high couplingg;1, we have several in-
teresting regimes depending on the reduced temperatuu
~see Fig. 4!. For u.uc , the counterions condensecontinu-
ously as the separationd decreases and the pressure of t
system remains repulsive down to very short distances
shown in Fig. 5, where we have plotted the pressure pro
for monovalent counterions (u50.1) for different values of
g. Note also that there is still a repulsive barrier, which d
creases with increasingg, while the range of the attraction i
shifted to larger separations. Forg51.2, corresponding to a
surface charge density of about one charge perS;300 Å2,
the total pressure becomes attractive at aboutd;10 Å. It
should be noted that in real experimental settings, ot

he

FIG. 3. The pressure profile for monovalent (u50.1) and diva-
lent (u50.02) counterions in the case of low surface chargesg.

FIG. 4. The fraction of condensed counterions as a function
distance.
1-8
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COUNTERION CONDENSATION AND FLUCTUATION- . . . PHYSICAL REVIEW E 66, 041501 ~2002!
strong repulsive force, such as hardcore or hydration fo
that we have not taken into account in our model, may
come important and may overwhelm this correlated attr
tion at length scale less than;20 Å @1#. This may explain
why attraction is difficult to observe experimentally fo
monovalentcounterions. Moreover, the pressure profile
large separations is similar to that of the PB theory, exc
with a renormalized or effective surface charged density.
deed, it is known experimentally that in order to fit expe
mental data to the PB theory, it is necessary to use an e
tive surface charge, which is always lower than the act
surface charge density@1#. Therefore, this counterion con
densation picture provides a possible scenario in which
phenomenon can be accounted for theoretically, without
voking charge regulation mechanism.

However, foru,uc the behavior of the order parametert
and the total pressure of the system is qualitatively differ
~see Fig. 4!. We find that there is a range in the couplin
constant,g`(u)/2,g,g`(u), in which the order paramete
displays a finite jump at a particular separationd0(g,u), and
the counterion condensation is first order as a function of
separationd. Here,g`(u) denotes the coupling constant
which the first-order counterion occurs at infinite separati
i.e., an isolated charged plate~see Sec. II and Ref.@14#!.
Thus, in the limitg→g`(u), we must haved0(g,u)→`,
since the system is composed of two isolated charged pla
However, we haved0(g,u)→0 asg→g`(u)/2, because this
limit corresponds to a single charged plate with twice of
surface charge density, i.e.,s52en0. This striking behavior
of the order parameter has interesting implications for
interaction for the system. Indeed, for sufficiently short d
tances, we find that the first-order counterion condensa
spontaneously can take the system from the repulsive to
attractive regime, resulting in a first-order binding transitio
This is illustrated in Fig. 6 for the case of trivalent counte
ons at room temperatureu50.01 atg51.3, corresponding to
a surface density of one charge perS;70 nm2. ~For triva-
lent counterions, the first-order counterion condensation
curs in the range of 0.9,g,1.8 @14#.! The corresponding
pressure profile is plotted in Fig. 7, which shows that

FIG. 5. The pressure profile for monovalent counterions in
case of moderate couplingg;1.
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binding transition occurs at aboutd;10 Å. We note that an
interesting consequence of this first-order binding transit
is the existence of metastable states, which may have im
tant manifestations in surface force experiments. It is eas
imagine that the system can be trapped in different me
stable states, and therefore, hysteresis may occur as the
surfaces are pushing in and pulling out again. Indeed, the
some experimental support for this behavior for multivale
counterions in similar systems@31#. It is important to empha-
size that this interesting behavior is not included in t
mean-field PB theory. Note also that this first-order bindi
transition can only take place at short distances. This is
caused0(g,u) generally increases with increasingg, and
eventually wheng is nearg`(u), the condensation occur
within the repulsive regime and the binding transition b
comes continuous. Thus, direct experimental observation
the first-order binding transition may prove subtle.

Finally, Forg.g`(u) andu,uc , the condensation agai
becomes continuous. This is because the first-order ph
transition has already occurred at infinite separation,
which t;1. In this regime, the length scale at which th

e FIG. 6. First-order binding transition: for the case of trivale
counterion (u50.01), the number of condensed counterions (t)
exhibits a discontinuous jump at a particular distance.

FIG. 7. The pressure profile for the first-order binding transitio
1-9
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attraction starts to overcome the repulsion can be quite la
~see Fig. 8!. In the case of divalent counterions, we find th
the onset of attraction occurs atd;100Å. Clearly, the higher
the surface charge org, the longer is the range of the attra
tion; therefore, together with the mechanism of fluctuatio
driven counterion condensation, the correlated attraction m
explain the long-ranged attractions observed experiment
Moreover, we note that there is a qualitative change in
shape of the pressure: the repulsive barrier disappears.
may mark an onset of the aggregation and has impor
experimental manifestations on the phase behavior of
macroions.

In summary, by incorporating the condensation driven
fluctuations, we show that the net pressure between
similarly charged surfaces becomes negative, hence at
tions, at a length scale much longer than the Go
Chapmann length. We also predict several distinct behav
of the system, depending on the valence of the counteri
that deviates significantly from the classical theory of t
double-layer interactions. While our calculation is based
the Gaussian fluctuation theory which may break down fo
very high surface charge density, a complementary treatm
is considered by Shklovskii@6# in this regime, where the
condensed counterions are assumed to form a 2D stro
correlated liquid. That theory predicts a strongly reduced s
face charge and exponentially large renormalized Go
Chapmann length, qualitatively similar to our results that
high surface charge most of the counterions are conden
Moreover, it was shown in Ref.@20# that by perturbing
around the low temperature Wigner crystal ground state,
long-ranged attraction persists to be operative, indepen
of the ground state. Thus, at large distances, we believe
our picture should capture the interaction of two simila
charged surfaces in the regime between where PB theo
appropriate~low surface charge! and the strong coupling
limit @6,32#.

However, there remain fundamental issues to be
dressed in the future. For example, in real systems,
charged surfaces are often characterized by discrete su
charge distribution. In recent studies@33#, it is shown that the

FIG. 8. The pressure profile for high surface charges. Note
the distance at which the pressure turns attractive can be large
pared to the Gouy-Chapmann lengthl.
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counterion distribution is strongly modified if discreteness
taken into account. In particular, the counterions tend to
more ‘‘localized’’ near the charged surface. It remains to
seen how this affects the condensation picture presente
this paper; it is possible that this effect may smooth out
first-order transition. However, we believe that a rapid var
tion of the condensation reflecting the first-order transit
should remain.
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APPENDIX: DERIVATION OF THE
FLUCTUATION PRESSURE

In this appendix, we present in detail the derivation of t
pressure arising from fluctuations. The derivative of the flu
tuation free energy with respect to the distanced is given in
Eq. ~27!,

]bDF
]d

5
1

2,B
E d3xG3D~x,x!

3
]

]d F 2

lD
(
6

d~z6d/2!1k2e2w(z)G , ~A1!

where

k2e2w(z)52a2sec2~az!Q~z!

12~ uzu2d/21j!22Q̃~z!,

as defined in Eq.~26!, j[lR /(11b2), andG3D(x,x8) is the
Green’s function defined as the inverse operator ofK̂3D and
satisfies Eq.~28!, which in Fourier space can be written a

F2
]2

]z2 1q21
2

lD
(
6

d~z6d/2!1k2e2w(z)GG3D~z,z8;q!

5,Bd~z2z8!.

The Green’s function can be solved by standard techni
@34#; first, we note that the homogeneous solutions are gi
by

h6
,~z;q!5e6qzF16

a

q
tan~az!G , ~A2!

for uzu,d/2 and

h6
.~z;q!5e6quzuF17

1

q~ uzu2d/21j!G , ~A3!

at
m-
1-10
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for uzu.d/2. We have two cases to consider,uz8u,d/2 and
uz8u.d/2. In the former case, we split the space into fo
regions: z,2d/2, 2d/2,z,z8, z8,z,d/2, and z.d/2
and write

G2~z,z8;q!5A~z8!h2
.~z;q! for z,2d/2, ~A4!

G,~z,z8;q!5B~z8!h1
,~z;q!1C~z8!h2

,~z;q! for

2d/2,z,z8, ~A5!

G.~z,z8;q!5D~z8!h1
,~z;q!1E~z8!h2

,~z;q! for

z8,z,d/2, ~A6!

G1~z,z8;q!5F~z8!h2
.~z;q! for z.2d/2. ~A7!
04150
r
The coefficientsA(z8)•••F(z8) are determined by the fol
lowing boundary conditions:

G3D~6d/2,z8;q!5G3D~6d/2,z8;q!, ~A8!

]zG3D~z,z8;q!uz56d/22]zG3D~z,z8;q!uz56d/2

5~2/lD!G3D~6d/2,z8;q!, ~A9!

G3D~z8,z8;q!5G3D~z8,z8;q!, ~A10!

]zG3D~z,z8;q!uz5z82]zG3D~z,z8;q!uz5z85,B .
~A11!

After some algebra, we obtain specifically
ilar
E~z8!5
,B

2q

h1
,~z8!1M~q!h2

,~z8!

~11a2/q2!@12M 2~q!#
, ~A12!

D~z8!5M~q!E~z8!, ~A13!

M~q!5
e2qd@~11b2!21g~12b22qlR!~11b21qlR!#

~11b2!2~11qlR!1~g1qlR!~11b21qlR!~12b21qlR!
, ~A14!

whereg[lR /lD52t/(12t). Therefore, the Green’s functionG3D(x,x) for uzu<d/2 is explicitly given by

G3D
, ~x,x!5E d2q

~2p!2

,B

2q H 11M 2~q!

12M 2~q!
2

a2

q2

sec2~az!

11a2/q2

11M 2~q!

12M 2~q!
~A15!

1
2M~q!

12M 2~q!
F @11a2/q2 tan2~az!#cosh~2qz!12a/q tan~az!sinh~2qz!

11a2/q2 G J . ~A16!

Note that the Green’s function is symmetric with respect toz, as expected from the symmetry of the problem. Sim
calculation can be done for the caseuzu>d/2 and the result is

G3D
. ~x,x!5E d2q

~2p!2

,B

2q H 12
12L~q!e22q(uzu2d/2)@11q~ uzu2d/21j!#2

q2~ uzu2d/21j!2 J , ~A17!

whereL(q) is given by

L~q!5
e2qdG~d/2!

@h2
.~d/2!#2

2
h1

.~d/2!e2qd

h2
.~d/2!

, ~A18!

and

G~d/2![
@h1

,~d/2!1M~q!h2
,~d/2!#@h2

,~d/2!1M~q!h1
,~d/2!#

~11a2/q2!@12M 2~q!#
5

2q

,B
G3D@d/2,d/2;q#. ~A19!
1-11



tric
o

ti-

in

A. W. C. LAU AND P. PINCUS PHYSICAL REVIEW E66, 041501 ~2002!
Returning to the expression in Eq.~A1!, we note that it can
be separated into three parts,

1

A
]bDFA

]d
5

2

,BlD
E d2q

~2p!2E0

`

dzG3D~z,z;q!

3
]

]d
d~z2d/2!, ~A20!

1

A
]bDFB

]d
5

1

,B
E d2q

~2p!2E0

`

dzG3D~z,z;q!Q~z!

3
]

]d
@2a2 sec2~az!#, ~A21!

1

A
]bDFC

]d
5

1

,B
E d2q

~2p!2E0

`

dzG3D~z,z;q!Q̃~z!

3
]

]dF 2

~z2d/21j!2G , ~A22!
al
o

-
, b

04150
where we have used the fact that the integrand is symme
with respect toz. Note also that there should also be tw
terms containing]Q(z)/]d and ]Q̃(z)/]d in ]bDFB /]d
and ]bDFC /]d, respectively; however, they cancel iden
cally when they are added together.

Let us first discuss Eq.~A20!; using the identity

(]/]d)d(z2d/2)[2 1
2 (]/]z)d(z2d/2), and integrating by

part, it can be transformed into

1

A
]bDFA

]d
5

1

,BlD
E d2q

~2p!2

]G3D~z,z;q!

]z U
z5d/21

.

~A23!

Using the boundary condition in Eq.~A9!,

]zG3D~z,z;q!uz5d/215]zG3D~z,z;q!uz5d/22

1~2/lD!G3D~d/2,d/2;q!,

and the explicit expression for the Green’s function given
Eq. ~A16!, we obtain after some algebra
1

A
]bDFA

]d
5

1

,BlD
E d2q

~2p!2

,B

2q

2

lD
H 2M 2~q!

12M 2~q!

qlD~11b2!2~b21qlR1qlD!

~11b2!21g~12b22qlR!~11b21qlR!

1
qlD

12M 2~q!

b2~11b2!2

~11b2!2~11qlR!1~g1qlR!~11b21qlR!~12b21qlR!J 1E d2q

~2p!2

qM 2~q!

12M 2~q!
.

~A24!
the
of
The next term, Eq.~A21!, can be shown to be

1

A
]bDFB

]d
52

8

,BlR
2

~11b2!b

21
d

lR
~11b2!

E d2q

~2p!2

3E
0

ad/2

dxG3D~x,x;q!sec2 x~11x tanx!.

~A25!

In evaluating thex integral, we note that there is a nontrivi
integral which involves the last term inside the bracket
Green’s function in Eq.~A16!; it reads

Q5E
0

d̃
dx sec2 x~11x tanx!$@11~2/k!2 tan2 x#

3coshkx14/k tanx sinhkx%,

wherek[2q/a and d̃[ad/2. Note that none of these inte
grals can be expressed in terms of elementary functions
f

ut

integrating by parts several times, one can show that
integralQ can be expressed in closed form with the help
the relation 2b tan(ad/2)512b2, by

Q5
~12b2!2~11b2!

16b~qlR!2 F21
d

lR
~11b2!G

3cosh~qd!2
b~11b2!

4~qlR!2 F21
d

lR
~11b2!G

3cosh~qd!2
~12b2!2b

4~qlR!2 cosh~qd!1
b cosh~qd!

~qlR!2

1
~12b2!~11b2!

8b~qlR! F21
d

lR
~11b2!G

3sinh~qd!1
b~11b2!

2~qlR!
sinh~qd!.

Substituting this result back into Eq.~A25! and rearranging
terms, we obtain
1-12
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1

A
]bDFB

]d
52

~11b2!2

,BlR
2 E d2q

~2p!2

,B

2qFG~d/2!

2
1J~d/2!G

1
1

,BlR
2

4b2~11b2!

21
d

lR
~11b2!

E d2q

~2p!2

,B

2q

3FG~d/2!

2
1J~d/2!1

2~12b2!J~d/2!

~qlR!2~11a2/q2!

2
2

qlR

2M~q!sinh~qd!

~11a2/q2!@12M 2~q!#
G ,

whereJ(d/2) is defined by the expression

J~d/2![
1

2 F11M 2~q!

12M 2~q!
2

2M~q!coshqd

12M 2~q!
G . ~A26!

Finally, we turn to the last term in Eq.~A1!, Eq. ~A22!. With
the help of the integral

E
d/2

`

dz
G3D~z,z;q!

~z2d/21j!3
5

,B

2q

~11b2!2

2lR
2

3F1

2
G~d/2!1

1

2
2

1

2
L~q!G ,

~A27!

Eq. ~A22! can be written as
04150
1

A
]bDFC

]d
5

~11b2!2

,BlR
2 E d2q

~2p!2

,B

2qFG~d/2!112L~q!

2 G
2

4b2~11b2!

21
d

lR
~11b2!

E d2q

~2p!2

,B

2q

3FG~d/2!112L~q!

2 G , ~A28!

which can be combined with the expression for]bDFB /]d
above@note thatG(d/2) cancels nicely# to yield

1

A
]bDFB1C

]d
5

~11b2!2

,BlR
2

,B

4plR
I31

1

,BlR
2

3
4b2~11b2!

21
d

lR
~11b2!

,B

4plR
~I22I3!,

~A29!

where we have defined the following dimensionless in
grals:

I 2[E d2q

~2p!2

4plR

2q F 2~12b2!J~d/2!

~qlR!2~11a2/q2!

2
2

qlR

2M~q!sinh~qd!

~11a2/q2!@12M 2~q!#
G , ~A30!

I 3[E d2q

~2p!2

4plR

2q F1

2
2

1

2
L~q!2J~d/2!G . ~A31!

With some straightforward but tedious algebra, they can
cast into a more explicit form,
I2@d/lR#5E
0

`

dx
2x@~12b21x!21g~11b21x!~12b21x!2b2~4b21x2!#

~4b21x2!@12M 2~x!#@~11b2!2~11x!1~g1x!~11b21x!~12b21x!#

2E
0

`

dx
2xM 2~x!$~12b22x!@~12b21x!1g~11b21x!#2~b21x!~4b21x2!%

~4b21x2!@12M 2~x!#@~11b2!21g~12b22x!~11b21x!#
~A32!

and

I3@d/lR#52E
0

`

dx
2gxb2

@12M 2~x!#@~11b2!2~11x!1~g1x!~11b21x!~12b21x!#

1E
0

`

dx
2xM 2~x!@x1g~b21x!#

@12M 2~x!#@~11b2!21g~12b22x!~11b21x!#
, ~A33!
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where we have made a change of the integration variablex5qlR . Now, observe that the first term in Eq.~A29! cancels
precisely the first term in Eq.~A24!. Therefore, combining the two expressions, we obtain Eq.~29! for the fluctuation pressure
Similarly, I1@d/lR# defined in Eq.~36! can be expressed as

I1@d/lR#52E d2q

~2p!2

4plR

2q

qlR@~11b2!212g~12b21qlR!#

~11b2!2~11qlR!1~g1qlR!~11b21qlR!~12b21qlR!

2E d2q

~2p!2

4plR

2q

qlRM 2~q!

12M 2~q!
H ~11b2!212g~12b21qlR!

~11b2!2~11qlR!1~g1qlR!~11b21qlR!~12b21qlR!

2
~11b2!212qlR~12b2!12~qlR!212g~12b22qlR!

~11b2!21g~12b22qlR!~11b21qlR! J . ~A34!

Note that the first term in this expression is logarithmically divergent.
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@32# André G. Moreira, and R. Netz, Phys. Rev. Lett.87, 078301

~2001!.
@33# D.B. Lukatsky, S.A. Safran, A.W.C. Lau, and P. Pincus, Eu

phys. Lett.58, 785 ~2002!; André G. Moreira and R. Netz,
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