Problem Set I

Due: Tuesday, 31 August 2010

1. (Problems 1.10.5, 9 and 15, p. 22)

Find the interval of convergence of each of the following power series. Be sure to investigate the endpoints of the interval in each case.

$$
S^{(\mathrm{a})}=\sum_{n=1}^{\infty} \frac{x^{n}}{(n!)^{2}}, \quad S^{(\mathrm{b})}=\sum_{n=1}^{\infty}(-1)^{n} n^{3} x^{n} \quad \text { and } \quad S^{(\mathrm{c})}=\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{3^{n}}
$$

2. (Problems 1.13.9, 13 and 17, p. 32)

Expand each of the following functions in a Maclaurin series (a Taylor series about $x=0$). Write the series as an infinite sum and calculate the first few (non-zero) terms explicitly.

$$
f^{(\mathrm{a})}(x)=\frac{1+x}{1-x}, \quad f^{(\mathrm{b})}(x)=\int_{0}^{x} \mathrm{e}^{-t^{2}} \mathrm{~d} t \quad \text { and } \quad f^{(\mathrm{c})}(x)=\ln \frac{1+x}{1-x} .
$$

3. (Problems 1.13.26, 31 and 35, p. 32)

Find the first few terms of the Maclaurin series for each of the following functions and check your results by computer.

$$
f^{(\mathrm{a})}(x)=\frac{1}{\sqrt{\cos x}}, \quad f^{(\mathrm{b})}(x)=\cos \left(\mathrm{e}^{x}-1\right) \quad \text { and } \quad f^{(\mathrm{c})}(x)=\frac{x}{\sin x}
$$

4. (Problems 1.15.7, 12 and 23c, pp. 40-41)

Use Maclaurin series to evaluate the following limits.

$$
y^{(\mathrm{a})}=\left.\frac{\mathrm{d}^{8}}{\mathrm{~d} x^{8}}\left(x^{6} \tan ^{2} x\right)\right|_{x=0}, \quad y^{(\mathrm{b})}=\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}} \quad \text { and } \quad y^{(\mathrm{c})}=\lim _{x \rightarrow 0}\left(\csc ^{2} x-\frac{1}{x^{2}}\right)
$$

5. (Problem 1.16.28, p. 42)

The energy of an electron at speed v in special relativity theory is $E=m c^{2}\left(1-v^{2} / c^{2}\right)^{-1 / 2}$, where m is the electron mass, and c is the speed of light. The factor $m c^{2}$ is called the rest mass energy (the energy when $v=0$). Find the first three terms of the series expansion of E in v. What is the second term in the series?
6. (Problem 1.16.33, p. 43)

If you are at the top of a tower of height h above the surface of the earth, show that the distance you can see along the surface of the earth is approximately $s=\sqrt{2 R h}$, where R is the radius of the earth. (See the figure and the hints in the book.)
7. (Problem 4.12.16, p. 237)

In kinetic theory, we have to evaluate integrals of the form

$$
I(n)=\int_{0}^{\infty} t^{n} \mathrm{e}^{-a t^{2}} \mathrm{~d} t
$$

Given that $I(0)=\sqrt{\pi / 4 a}$, evaluate I for all integers n.

