Problem Set IV

Due: Thursday, 23 September 2010

1. (Problems 7.11.6 and 8, pp. 377-378)

Use Parseval's theorem and the results of the problems indicated to sum the following series:
a. $\sum_{n \geq 1} \frac{1}{n^{4}}$ (see Problem 7.9.9).
b. $\sum_{\substack{n \geq 1 \\ n \text { odd }}} \frac{1}{n^{4}}$ (see Problem 7.9.10).
2. (Problems 7.12.3 and 7, p. 384)

Find the exponential Fourier transform of

$$
f^{(\mathrm{a})}(x):=\left\{\begin{array}{ll}
-1 & -\pi<x<0 \\
1 & 0<x<\pi \\
0 & |x|>\pi
\end{array} \quad \text { and } \quad f^{(\mathrm{b})}(x):= \begin{cases}|x| & |x|<1 \\
0 & |x|>1 .\end{cases}\right.
$$

Use these results to write each $f(x)$ as a Fourier integral. (That is, write each as a superposition of plane waves in the form of an integral over α.)
3. (Problems 7.12.24 and 33, pp. 385-386)
a. Find the exponential Fourier transform of $f(x):=\mathrm{e}^{-|x|}$ and write the inverse transform to show that

$$
\int_{0}^{\infty} \frac{\cos \alpha x}{\alpha^{2}+1} \mathrm{~d} \alpha=\frac{\pi}{2} \mathrm{e}^{-|x|}
$$

b. Find the Fourier transform of $1 /\left(1+x^{2}\right)$.

Hint: Interchange x and α in the result of the first part.
c. Verify Parseval's theorem for the Fourier transform computed in part (a).

