Problem Set V

Due: Tuesday, 5 October 2010

1. (Problems 2.9.12, 18 and 23, pp. 63-64)

Express each of the following complex numbers in the Cartesian form $z=x+\mathrm{i} y$.

$$
z^{(\mathrm{a})}:=4 \mathrm{e}^{-8 \pi \mathrm{i} / 3}, \quad z^{(\mathrm{b})}:=\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{4} \quad \text { and } \quad z^{(\mathrm{c})}:=\frac{(1+\mathrm{i})^{48}}{(\sqrt{3}-\mathrm{i})^{25}}
$$

2. (Problems 2.10.10, 19 and 23, pp. 66-67)

Find all complex values of each of the following roots.

$$
z^{(\mathrm{a})}:=\sqrt[5]{32}, \quad z^{(\mathrm{b})}:=\sqrt[3]{\mathrm{i}} \quad \text { and } \quad z^{(\mathrm{c})}:=\sqrt[4]{8 \mathrm{i} \sqrt{3}-8}
$$

3. (Problems 2.11.4, 7 and 10, p. 69)

Find all complex values of each of the following functions.

$$
z^{(\mathrm{a})}:=\mathrm{e}^{3 \ln 2-\mathrm{i} \pi}, \quad z^{(\mathrm{b})}:=\tan (\mathrm{i} \ln 2) \quad \text { and } \quad z^{(\mathrm{c})}:=\sin (\mathrm{i} \ln \mathrm{i}) .
$$

4. (Problems 2.12.2, 3, 8, 12 and 16, p. 71)

Verify each of the following identities using the definitions of the standard trigonometric and hyperbolic functions of a complex variable $z=x+\mathrm{i} y$.
a. $\cos z=\cos x \cosh y-\mathrm{i} \sin x \sinh y$
b. $\sinh z=\sinh x \cos y+\mathrm{i} \cosh x \sin y$
c. $\cosh 2 z=\cosh ^{2} z+\sinh ^{2} z$
d. $\cos ^{4} z+\sin ^{4} z=1-\frac{1}{2} \sin ^{2} 2 z$
e. $\tan \mathrm{i} z=\mathrm{i} \tanh z$
5. (Problems 2.11.27, 29 and 36, p. 71)

Evaluate each of the following functions in the Cartesian form $z=x+\mathrm{i} y$

$$
z^{(\mathrm{a})}:=\sin (4+3 \mathrm{i}), \quad z^{(\mathrm{b})}:=\cosh 2 \pi \mathrm{i} \quad \text { and } \quad z^{(\mathrm{c})}:=\sinh \left(1+\frac{\mathrm{i} \pi}{2}\right)
$$

6. (Problems 2.14.7, 9 and 19, p. 74)

Find all complex values of each of the following functions.

$$
z^{(\mathrm{a})}:=\ln \frac{1+\mathrm{i}}{1-\mathrm{i}}, \quad z^{(\mathrm{b})}:=(-1)^{\mathrm{i}} \quad \text { and } \quad z^{(\mathrm{c})}:=\cos (\pi+\mathrm{i} \ln 2) .
$$

7. (Problems 2.15.7, 10 and 13, p. 74)

Find all complex values of each of the following inverse functions.

$$
z^{(\mathrm{a})}:=\tan ^{-1}(\mathrm{i} \sqrt{2}), \quad z^{(\mathrm{b})}:=\cos ^{-1} \frac{5}{4} \quad \text { and } \quad z^{(\mathrm{c})}:=\cosh ^{-1}(-1)
$$

8. (Problems 14.1.8, 12 and 16, p. 667)

Find the real and imaginary parts $u(x, y)$ and $v(x, y)$, respectively, of the following functions of a complex variable $z=x+\mathrm{i} y$.

$$
f^{(\mathrm{a})}(z):=\sin z, \quad f^{(\mathrm{b})}(z):=\frac{z}{z^{2}+1} \quad \text { and } \quad f^{(\mathrm{c})}(z):=z^{2}-\bar{z}^{2} .
$$

9. (Problems 14.2.8, 12 and 16, p. 672)

Use the Cauchy-Riemann conditions to determine all points z where each of the functions in the previous problem is analytic.
10. (Problems 14.2.36, 40 and 41, p. 667)

Expand each of the following functions of a complex variable $z=x+\mathrm{i} y$ in a power series about the origin $z=0$ in the complex plane. Find the disk of convergence for each.

$$
f^{(\mathrm{a})}(z):=\sqrt{1+z^{2}}, \quad f^{(\mathrm{b})}(z):=\frac{1}{1-z} \quad \text { and } \quad f^{(\mathrm{c})}(z):=\mathrm{e}^{\mathrm{i} z} .
$$

