Problem Set VII

Due: Tuesday, 16 November 2010

1. (Problems 14.7.6, 12 and 16, p. 699)

Evaluate the following definite integrals of real functions by relating them to contour integrals in the complex plane.

$$
I^{(\mathrm{a})}:=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{(2+\cos \theta)^{2}}, \quad I^{(\mathrm{b})}:=\int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{x^{4}+16} \quad \text { and } \quad I^{(\mathrm{c})}:=\int_{0}^{\infty} \frac{x \sin x \mathrm{~d} x}{9 x^{2}+4} .
$$

2. (Problems 14.7.25 and 27, p. 700)

Consider the definite integrals

$$
I^{(\mathrm{a})}:=\int_{0}^{\infty} \frac{x \sin x}{9 x^{2}-\pi^{2}} \mathrm{~d} x \quad \text { and } \quad I^{(\mathrm{b})}:=\int_{0}^{\infty} \frac{\cos \pi x}{1-4 x^{2}} \mathrm{~d} x .
$$

Determine whether each integral exists. If it does, evaluate it by relating it to a contour integral. If not, then evaluate its Cauchy principal value by relating that integral to a contour integral.
3. (Problems 14.7.34 and 35, p. 700)

Evaluate the definite integrals

$$
I^{(\mathrm{a})}:=\int_{0}^{\infty} \frac{\sqrt{x} \mathrm{~d} x}{(1+x)^{2}} \quad \text { and } \quad I^{(\mathrm{b})}:=\int_{0}^{\infty} \frac{x^{1 / 3} \mathrm{~d} x}{(1+x)(2+x)}
$$

by relating each to a contour integral around an appropriate "keyhole contour."
4. (Problem 14.7.42, p. 701)

Let $F(z):=f^{\prime}(z) / f(z)$, where $f(z)$ is analytic except at isolated points.
a. Show that the residue of $F(z)$ at an $n^{\text {th }}$-order zero of $f(z)$ is n.

Hint: If $f(z)$ has a pole of order n at a, then $f(z)=a_{n}(z-a)^{n}+a_{n+1}(z-a)^{n+1}+\cdots$.
b. Show that the residue of $F(z)$ at a $p^{\text {th }}$-order pole of $f(z)$ is n.

Hint: See the definition of a pole of order p at the end of Section 14.4.

