Review Problems I

Recommended Reading: Chow, Appendix 1; Boas, Chapter 1.

1. (Chow A1.7, p. 510) Prove that

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \text { and } \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}
$$

and that

$$
A \cos x+B \sin x=\sqrt{A^{2}+B^{2}} \sin (x+\delta), \quad \text { where } \quad \tan \delta:=\frac{A}{B}
$$

for all real x, A and B.
2. (Chow A1.8, p. 510) Prove that

$$
\cosh ^{2} x-\sinh ^{2} x=1 \quad \text { and } \quad \operatorname{sech}^{2} x+\tanh ^{2} x=1
$$

for all real x.
3. (Chow A1.9, p. 511) Calculate the limit of the function $f(x):=x^{2}$ as $x \rightarrow 2$, and show that $f(x)$ is continuous there.
4. (Boas 1.4.6) Evaluate the partial sums

$$
S_{N}:=\sum_{n=1}^{N} \frac{1}{n(n+1)},
$$

and show that they converge in the limit $N \rightarrow \infty$.
Hint: Expand the summand using partial fractions.
5. (Boas 1.6.4) Use the comparison test to prove that series

$$
S_{(\mathrm{a})}:=\sum_{n=1}^{\infty} \frac{1}{2^{n}+3^{n}} \quad \text { and } \quad S_{(\mathrm{b})}:=\sum_{n=1}^{\infty} \frac{1}{n 2^{n}} .
$$

converge.
6. (Boas 1.6.8 and 14) Use the integral test to determine whether the series

$$
S_{(\mathrm{a})}:=\sum_{n=1}^{\infty} \frac{n}{n^{2}+4} \quad \text { and } \quad S_{(\mathrm{b})}:=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+9}}
$$

converge or diverge.
7. (Boas 1.6.21, 26 and 29) Use the ratio test to determine whether the series

$$
S_{(\mathrm{a})}:=\sum_{n=0}^{\infty} \frac{5^{n}(n!)^{2}}{(2 n!)}, \quad S_{(\mathrm{b})}:=\sum_{n=0}^{\infty} \frac{(n!)^{3} \mathrm{e}^{3 n}}{(3 n)!} \quad \text { and } \quad S_{(\mathrm{c})}:=\sum_{n=0}^{\infty} \frac{\sqrt{(2 n)!}}{(n)!}
$$

converge or diverge.
8. (Boas 1.17.1, 4 and 6) Use the alternating series test to determine whether the series

$$
S_{(\mathrm{a})}:=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}, \quad S_{(\mathrm{b})}:=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!} \quad \text { and } \quad S_{(\mathrm{c})}:=\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+5}
$$

converge or diverge.
9. Which of the series from the previous problem converge absolutely?
10. (Chow A1.13, p. 520) Use Gauss' test to determine whether the series

$$
S:=\left(\frac{1}{2}\right)^{2}+\left(\frac{1 \times 3}{2 \times 4}\right)^{2}+\left(\frac{1 \times 3 \times 5}{2 \times 4 \times 6}\right)^{2}+\cdots
$$

converges or diverges. Show that neither the ratio test nor Raabe's test would be conclusive for this series.

