## Review Problems IV

Recommended Reading: Chow, pp. 15-27.

1. (Chow 1.12)
a. Find a unit vector normal to the surface $x^{2}+y^{2}-z=1$ at the point $(1,1,1)$.
b. Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{3}$ at the points $(1,-2,-1)$ in the direction $\hat{\mathbf{x}}-2 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}$.
2. (Chow 1.14) Consider the ellipse $r_{1}+r_{2}=a$, with $a$ a constant, that is shown in Figure 1.23 of the text. Prove that the vectors $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ from either focus to a given point on the ellipse make equal angles with the tangent to the ellipse at that point.
3. (based on Chow 1.17)
a. Show that the divergence of an inverse-square force field in three dimensions is zero,

$$
\boldsymbol{\nabla} \cdot \mathbf{F}:=\boldsymbol{\nabla} \cdot \frac{\mathbf{r}}{r^{3}}=0,
$$

except possibly at the origin.
b. Show that the flux of $\mathbf{F}$ through a sphere of radius $a$ about the origin is $4 \pi$. Use Gauss' theorem to show that the divergence of $\mathbf{F}$ cannot vanish at the origin.
c. If $f$ is a differentiable function and $\mathbf{A}$ is a differentiable vector field, then show that

$$
\boldsymbol{\nabla} \cdot(f \mathbf{A})=\mathbf{A} \cdot \boldsymbol{\nabla} f+f \boldsymbol{\nabla} \cdot \mathbf{A} .
$$

d. Calculate the divergence of a radial vector field (i.e., everywhere parallel to $\mathbf{r}$ ) in three dimensions. Under what conditions does the divergence vanish at the origin?
4. (Chow 1.20)
a. Find constants $a, b$ and $c$ such the the vector field

$$
\mathbf{A}:=(x+2 y+a z) \hat{\mathbf{x}}+(b x-3 y-z) \hat{\mathbf{y}}+(4 x+c y+2 z) \hat{\mathbf{z}}
$$

is irrotational (i.e., curl-free).
b. Show that the resulting vector field can be expressed as the gradient of a scalar field.

