Date

Tue 24 Aug

Thu 26 Aug

Tue 31 Aug

Thu 02 Sep

Tue 07 Sep

Thu 09 Sep

Tue 14 Sep

Thu 16 Sep

Tue 21 Sep

Thu 23 Sep

Lecture Topic

- I. Prerequisite Material (Will Not Be Covered)
- Infinite Series
- Reading: §§ 1.1 - 1.9 (pp. 1-20)
- Complex Numbers and Series
- Reading: §§ 2.1 - 2.6 (pp. 46 -57)
- Vectors, Matrices and Determinants
- Reading: §§ $3.1-3.6$ (pp. 82 - 123)
- Partial Derivatives
- Reading: §§ $4.1-4.11$ (pp. 188-233)
- Multiple Integrals
- Reading: §§ 5.1 - 5.5 (pp. 241 -273)
- Vector Analysis
- Reading: §§ 6.1 - 6.8 (pp. 276-308)

- II. Fourier Analysis (3 Weeks)

- Methods from Elementary Calculus
- Reading: $\S \S 1.10-1.15$ and § 4.12 (pp. $20-43,233-238=30$)
- Finite-Dimensional Hilbert Spaces
- Reading: §§ $3.7-3.10$ and § 3.14 (pp. 124-148, 179 - $184=31$)
- Eigenvalues and Eigenvectors
- Reading: §§ $3.11-12$ (pp. $148-172=25$)
- Introduction to Fourier Series
- Reading: §§ $7.1-7.6$ (pp. $340-358=19)$
- Applications of Fourier Series
- Reading: §§ $7.6-7.11$ (pp. 358-378 = 21)
- Fourier Transforms
- Reading: § 7.12 (pp. $378-386=9$)
- III. Complex Variables (3 Weeks)
- Integral Theorems of Vector Calculus
- Reading: $\S \S 6.9-6.11$ (pp. 309-336 = 28)
- Elementary Functions in the Complex Plane
- Reading: $\S \S 2.7-2.16$ (pp. $58-80=23$)
- Derivatives and Integrals in the Complex Plane
- Reading: §§ $14.1-14.3$ (pp. $666-678=13$)
- Laurent Series and the Calculus of Residues
- Reading: §§ $14.4-14.6$ and 14.8 (pp. $678-687,702-705=14$)
Date Lecture Topic

Tue 28 Sep

Thu 30 Sep

Tue 05 Oct

Thu 07 Oct

Tue 12 Oct

Thu 14 Oct

Tue 19 Oct

Thu 21 Oct

Tue 26 Oct

Thu 28 Oct

Tue 02 Nov

Thu 04 Nov

Tue 09 Nov

Thu 11 Nov
Tue 16 Nov

Thu 18 Nov

Tue 23 Nov

- Evaluation of Definite Integrals
- Reading: § 14.7 (pp. $687-702=16$)
- Conformal Mapping
- Reading: §§ $14.9-14.10$ (pp. $705-718=14$)
- IV. Differential Equations (3½ Weeks)
- First-Order Ordinary Differential Equations
- Reading: §§ $8.1-8.4$ (pp. $390-408=19$)
- Second-Order Ordinary Differential Equations
- Reading: $\S \S 8.5$ and 8.7 (pp. $408-416,430-436=16$)
- Mid-Term Exam Available
- Fourier Analysis
- Complex Variables
- The Damped, Driven, Harmonic Oscillator
- Reading: § 8.6 (pp. $417-430=14$)
- Mid-Term Exam Due
- The Laplace Transform Method
- Reading: §§ $8.8-8.10(437-449=13)$
- The Green Function Method
- Reading: $\S \S 8.11-8.12$ (pp. $449-466=18$)
- The Laplace Equation and Its Relatives
- Reading: §§ $13.1-13.2$ (pp. $619-628=10$)
- The Heat and Wave Equations
- Reading: §§ $13.3-13.4$ (pp. 628-638 = 11)
- V. Special Functions ($31 / 2$ Weeks)
- Tabulated Integrals and Their Approximations
- Reading: §§ 11.1 - 11.11 (pp. $537-554=18$)
- Legendre Polynomials
- Reading: §§ $12.1-12.5$ (pp. $562-575=14)$
- Associated Legendre Functions
- Reading: §§ $12.6-12.11$ (pp. $575-587=13$)
- Bessel Functions
- Reading: §§ $12.12-12.18$ (pp. $587-600=14)$
- (No Class due to Veteran's Day)
- Orthogonal Expansions
- Reading: §§ $12.19-12.22$ (pp. $601-614=14)$
- Cylinder and Sphere Problems
- Reading: $\S \S 13.5-13.7$ (pp. 638-652=15)
- The Principle of Superposition

Date	Lecture Topic
	• Reading: $\S \S 13.8-13.9$ (pp. $652-663=12)$
Thu 25 Nov	\bullet (No Class due to Thanksgiving Recess)
Tue 30 Nov	\bullet Review Session for Final Exam
	\bullet Final Exam Available
	\bullet Differential Equations
	\bullet Special Functions

