Physics 5115 Mathematical Physics Florida Atlantic University Fall 2010

Problem Set I

Due: Tuesday, 7 September 2010

- Do (at least) **four** of the following five problems from the text.
- Solutions are due (no later than) at the **beginning** of class.
- 1. (Exercise A.2, p. 747)

Let U, V and W be vector spaces, and let $A: V \to W$ and $B: U \to V$ be linear maps. Suppose that these maps are represented by matrices \mathbf{A} , with entries $A^{\mu}{}_{\nu}$, and \mathbf{B} , with entries $B^{\mu}{}_{\nu}$, respectively, relative to given bases on the three vector spaces. Use the action of the maps on basis elements to show that the product map $A \circ B: U \to W$ is represented by the matrix product \mathbf{AB} , with entries $A^{\mu}{}_{\lambda} B^{\lambda}{}_{\nu}$, relative to the given bases.

- 2. (Exercises A.3, A.4 and A.5, p. 753) Let $A: V \to V$ and $B: V \to V$ be linear operators mapping a vector space V to itself.
 - a. Show that $(AB)^* = B^*A^*$.
 - b. How does the reversal of operator order in $(AB)^* = B^*A^*$ manifest itself in the Dirac notation?
 - c. Suppose that the operator A is represented by the matrix **A** relative to a given basis \mathbf{e}_{μ} on V. Show that the conjugate operator A^* is represented by the transpose \mathbf{A}^{\top} of the matrix **A** relative the dual basis $\mathbf{e}^{*\mu}$ on the dual space V^* .

Let P_1 be a projection operator. Show that

- a. $P_2 := I P_1$ is also a projection operator.
- b. $P_1 P_2 = 0$.
- c. Im $P_2 = \operatorname{Ker} P_1$ and $\operatorname{Ker} P_2 = \operatorname{Im} P_1$.
- 4. (Exercise A.9, p. 762)

Let ω be a skew-symmetric *n*-linear form on an *n*-dimensional vector space *V*. Assuming that ω does not vanish identically, show that a set $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}$ of vectors is linearly independent, and hence forms a basis, if and only if $\omega(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n) \neq 0$.

^{3. (}Exercise A.8, p. 756)

5. (Exercise A.15, p. 770)

Suppose that V is a vector space of dimension n > 1 and that $T: V \to V$ is a linear operator that obeys the equation

$$(T - \lambda I)^p = 0$$

for p = n, but not for any smaller p. Here, λ is a scalar and I is the identity operator.

- a. Show that every eigenvector of T must have eigenvalue λ . Use this result to deduce that T cannot be diagonalized.
- b. Show that there must exist a vector \mathbf{e}_1 such that $(T \lambda I)^p \mathbf{e}_1 = \mathbf{0}$ for p = n, but not for any smaller value of p.
- c. Define the vectors $\mathbf{e}_2 := (T \lambda I) \mathbf{e}_1$, $\mathbf{e}_3 := (T \lambda I) \mathbf{e}_2$, and so forth up to \mathbf{e}_n . Show that these vectors must be linearly independent, and therefore form a basis for V.
- d. Write out the $n \times n$ matrix **T** representing the operator T in the basis $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$.