Problem Set I

Due: Tuesday, 7 September 2010

- Do (at least) four of the following five problems from the text.
- Solutions are due (no later than) at the beginning of class.

1. (Exercise A.2, p. 747)

Let U, V and W be vector spaces, and let $A: V \rightarrow W$ and $B: U \rightarrow V$ be linear maps. Suppose that these maps are represented by matrices \boldsymbol{A}, with entries $A^{\mu}{ }_{\nu}$, and \boldsymbol{B}, with entries $B^{\mu}{ }_{\nu}$, respectively, relative to given bases on the three vector spaces. Use the action of the maps on basis elements to show that the product map $A \circ B: U \rightarrow W$ is represented by the matrix product $\boldsymbol{A B}$, with entries $A^{\mu}{ }_{\lambda} B^{\lambda}{ }_{\nu}$, relative to the given bases.
2. (Exercises A.3, A. 4 and A.5, p. 753)

Let $A: V \rightarrow V$ and $B: V \rightarrow V$ be linear operators mapping a vector space V to itself.
a. Show that $(A B)^{*}=B^{*} A^{*}$.
b. How does the reversal of operator order in $(A B)^{*}=B^{*} A^{*}$ manifest itself in the Dirac notation?
c. Suppose that the operator A is represented by the matrix \boldsymbol{A} relative to a given basis \mathbf{e}_{μ} on V. Show that the conjugate operator A^{*} is represented by the transpose \boldsymbol{A}^{\top} of the matrix A relative the dual basis $\mathbf{e}^{* \mu}$ on the dual space V^{*}.
3. (Exercise A.8, p. 756)

Let P_{1} be a projection operator. Show that
a. $P_{2}:=I-P_{1}$ is also a projection operator.
b. $P_{1} P_{2}=0$.
c. $\operatorname{Im} P_{2}=\operatorname{Ker} P_{1}$ and $\operatorname{Ker} P_{2}=\operatorname{Im} P_{1}$.
4. (Exercise A.9, p. 762)

Let ω be a skew-symmetric n-linear form on an n-dimensional vector space V. Assuming that ω does not vanish identically, show that a set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right\}$ of vectors is linearly independent, and hence forms a basis, if and only if $\omega\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right) \neq 0$.
5. (Exercise A.15, p. 770)

Suppose that V is a vector space of dimension $n>1$ and that $T: V \rightarrow V$ is a linear operator that obeys the equation

$$
(T-\lambda I)^{p}=0
$$

for $p=n$, but not for any smaller p. Here, λ is a scalar and I is the identity operator.
a. Show that every eigenvector of T must have eigenvalue λ. Use this result to deduce that T cannot be diagonalized.
b. Show that there must exist a vector \mathbf{e}_{1} such that $(T-\lambda I)^{p} \mathbf{e}_{1}=\mathbf{0}$ for $p=n$, but not for any smaller value of p.
c. Define the vectors $\mathbf{e}_{2}:=(T-\lambda I) \mathbf{e}_{1}, \mathbf{e}_{3}:=(T-\lambda I) \mathbf{e}_{2}$, and so forth up to \mathbf{e}_{n}. Show that these vectors must be linearly independent, and therefore form a basis for V.
d. Write out the $n \times n$ matrix \boldsymbol{T} representing the operator T in the basis $\left\{\mathbf{e}_{1}, \cdots \mathbf{e}_{n}\right\}$.

