Problem Set III

Due: Tuesday, 28 September 2010

- Do (at least) four of the following five problems from the text.
- Solutions are due (no later than) at the beginning of class.

1. (Exercise B.1, p. 790)

Suppose that we exponentially suppress high frequencies by multiplying the Fourier amplitude $\tilde{f}(k)$ by $\mathrm{e}^{-\epsilon|k|}$. Show that the original signal $f(x)$ is smoothed by convolution with a Lorentzian approximation to the delta function

$$
\delta_{\epsilon}^{\mathrm{L}}(x-\xi)=\frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(x-\xi)^{2}}
$$

As $\epsilon \rightarrow 0$, observe that $\delta_{\epsilon}^{\mathrm{L}}(x) \rightarrow \delta(x)$ in the sense of distributions.
2. (Exercises B.3, p. 790, and B.6, p. 792, the Hilbert transform)
a. Show that the sum

$$
D_{r}(\theta):=\sum_{n=-\infty}^{\infty} \operatorname{sgn}(n) \mathrm{e}^{\mathrm{i} n \theta} r^{|n|}=\frac{r \mathrm{e}^{\mathrm{i} \theta}}{1-r \mathrm{e}^{\mathrm{i} \theta}}-\frac{r \mathrm{e}^{-\mathrm{i} \theta}}{1-r \mathrm{e}^{-\mathrm{i} \theta}},
$$

which converges for $0<r<1$, approaches the principal-value distribution

$$
D(\theta):=\mathrm{i} \mathcal{P} \cot \frac{\theta}{2}
$$

in the limit $r \rightarrow 1$.
b. Let $f(\theta)$ be a smooth function on the unit circle and define its Hilbert transform

$$
\mathcal{H} f(\theta):=\frac{1}{2 \pi} f_{-\pi}^{\pi} f\left(\theta^{\prime}\right) \cot \left(\frac{\theta-\theta^{\prime}}{2}\right) \mathrm{d} \theta^{\prime}
$$

Show that $f(\theta)$ can be recovered if one knows both its Hilbert transform $\mathcal{H} f(\theta)$ and its average value $\langle f\rangle$, according to the formula

$$
f(\theta)=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathcal{H} f\left(\theta^{\prime}\right) \cot \left(\frac{\theta-\theta^{\prime}}{2}\right) \mathrm{d} \theta^{\prime}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\theta^{\prime}\right) \mathrm{d} \theta^{\prime}=:-\mathcal{H}^{2} f(\theta)+\langle f\rangle .
$$

c. Let $f(x)$ be a function on the real line such that $\int_{-\infty}^{\infty}|f(x)| \mathrm{d} x$ is finite. Take a suitable limit in the previous result to show that $\mathcal{H}^{2} f(x)=-f(x)$, where

$$
\mathcal{H} f(x):=\frac{1}{\pi} f_{-\infty}^{\infty} \frac{f\left(x^{\prime}\right)}{x-x^{\prime}} \mathrm{d} x^{\prime}
$$

defines the Hilbert transform of a function on the real line.
3. (Exercises 2.3, p. 64, and 2.5, p. 65)
a. Evaluate the integral

$$
F(s, t)=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{e}^{2 s x-s^{2}} \mathrm{e}^{2 t x-t^{2}} \mathrm{~d} x
$$

and expand both sides of your result as double power series in s and t. By comparing the coefficients of $s^{m} t^{n}$ on either side, show that

$$
\int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) \mathrm{e}^{-x^{2}} \mathrm{~d} x=2^{n} n!\sqrt{\pi} \delta_{m n} .
$$

b. Define the normalized Hermite functions

$$
\varphi_{n}(x):=\frac{1}{\sqrt{2^{n} n!\sqrt{\pi}}} H_{n}(x) \mathrm{e}^{-x^{2} / 2}
$$

and the Fourier transform operator

$$
\mathcal{F} f(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} x s} f(s) \mathrm{d} s
$$

Note that \mathcal{F}^{4} is the identity map when the integral is normalized in this way, whence the only possible eigenvalues of \mathcal{F} are ± 1 and \pm i. Starting from Eq. (2.56) of the book, or otherwise, show that $\varphi_{n}(x)$ is an eigenfunction of \mathcal{F} with eigenvalue i^{n}.
4. (Exercise 2.13, p. 78)

The completeness of a set $\left\{P_{n}(x)\right\}$ of polynomials that are orthonormal with respect to a positive weight function $w(x)$ may be expressed mathematically in the form

$$
\sum_{n=0}^{\infty} P_{n}(x) P_{n}(y)=\frac{\delta(x-y)}{w(x)}
$$

It is sometimes useful to have a formula for the partial sums of this infinite series. Suppose that the $P_{n}(x)$ obey the three-term recurrence relation

$$
x P_{n}(x)=b_{n} P_{n+1}(x)+a_{n} P_{n}(x)+b_{n-1} P_{n-1}(x),
$$

subject to the initial conditions

$$
P_{-1}(x)=0 \quad \text { and } \quad P_{0}(x)=1 .
$$

Use this recurrence relation, together with its initial conditions, to obtain the ChristoffelDarboux partial sum formula

$$
\sum_{n=0}^{N-1} P_{n}(x) P_{n}(y)=b_{N-1} \frac{P_{N}(x) P_{N-1}(y)-P_{N-1}(x) P_{N}(y)}{x-y}
$$

5. (Exercises 2.20, 2.21 and 2.22, p. 84)
a. Let $f(x)$ be a continuous function. Observe that $f(x) \delta(x)=f(0) \delta(x)$ to deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) \delta(x)]=f(0) \delta^{\prime}(x)
$$

If $f(x)$ is not only continuous but differentiable, then we can use the product rule to compute the above derivative in the form

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) \delta(x)]=f^{\prime}(x) \delta(x)+f(x) \delta^{\prime}(x) .
$$

Show that these two expressions are equivalent in the sense of distributions by integrating the right side of each against an arbitrary test function $\varphi(x)$.
b. Let $\varphi(x)$ be a test function. Show that

$$
\frac{\partial}{\partial t} \int_{-\infty}^{\infty} \frac{\mathcal{P}}{x-t} \varphi(x) \mathrm{d} x=f_{-\infty}^{\infty} \frac{\varphi(x)-\varphi(t)}{(x-t)^{2}} \mathrm{~d} x
$$

Show further that the right-hand side of this equation is equal to

$$
-\left(\frac{\partial}{\partial x} \frac{\mathcal{P}}{x-t}, \varphi\right):=\int_{-\infty}^{\infty} \frac{\mathcal{P}}{x-t} \varphi^{\prime}(x) \mathrm{d} x
$$

c. Let $\theta(x)$ denote the step function or Heaviside distribution

$$
\theta(x):= \begin{cases}1 & x>0 \\ \text { undefined } & x=0 \\ 0 & x<0\end{cases}
$$

Derive the equation

$$
\lim _{\epsilon \rightarrow 0^{+}} \ln (x+\mathrm{i} \epsilon)=\ln |x|+\mathrm{i} \pi \theta(-x)
$$

and take the weak derivative of both sides to show that

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{x+\mathrm{i} \epsilon}=\frac{\mathcal{P}}{x}-\mathrm{i} \pi \delta(x) .
$$

