<u>Date</u>	Lecture Topic	<u>Reading</u>
	Graduate Mathematical Physics	
Tue 24 Aug	Linear Algebra: Theory	744 – 756
	 Vectors, bases and components 	
	 Linear maps and dual vectors 	
	 Inner products and adjoint operators 	
	 Direct sums and quotients 	
Thu 26 Aug	 Linear Algebra: Applications 	757 – 772
	Problem set I available	
	 Ex. A.2 (747), A.3–5 (753), A.8 (756), A.9 (762), A.15 (770) 	
	 Linear systems of equations 	
	 Matrices and determinants 	
	 Eigenvalues and diagonalization 	
	 Jordan normal form 	
Tue 31 Aug	 The Calculus of Variations 	1 – 17
	 Functionals and their variations 	
	 The Euler–Lagrange equations 	
	 Lagrangian mechanics 	
	 Noether's theorem and gauge theory 	©
Thu 02 Sep	 Fields and Continuum Mechanics 	17 – 26
	 Many degrees of freedom 	
	 Continuum limit and mechanics of media 	
	 Maxwell theory and gauge fields 	©
	 Fluid mechanics 	
Tue 07 Sep	 Advanced Topics in Variational Calculus 	27 – 38
	 Problem set I due, problem set II available 	
	• Ex. 1.2 (38), 1.8 (43), 1.13 (46)	
	 Pr. 1.6 (41), 1.12 (45) 	
	 Problems with variable endpoints 	
	 Constraints and Lagrange multipliers 	
	 The second variation 	
	 Rayleigh–Ritz problems 	©
Thu 09 Sep	 Function Spaces 	50 – 62
	 Functions as vectors 	
	 Convergence and Hilbert space 	
	 Completeness and Hilbert bases 	
	Best approximation and Parseval's theorem	

-	-

<u>Date</u>	Lecture Topic	<u>Reading</u>
	 Best approximation and Parseval's theorem 	
Tue 14 Sep	 Fourier Series and Transforms 	779 – 795
_	 Fourier series and their limits 	
	Fourier transforms	
	Gibbs' phenomenon	
	 The Poisson summation formula 	
Thu 16 Sep	 Linear Operators and Distributions 	62 – 75
	Problem set II due, problem set III available	
	• Ex. B.1 (790), B.3 (790), B.6 (792),	
	2.3 (64), 2.5 (65), 2.13 (78), 2.20–22 (84)	
	 Orthogonal polynomials 	
	 Linear operators 	
	 Test functions and distributions 	
	 Calculus with distributions 	
Tue 21 Sep	 Linear Ordinary Differential Equations 	86 – 98
	 Existence and uniqueness of solutions 	
	 Linear independence and the Wronskian 	
	 Normal form and singular points 	
	 Solution of inhomogeneous equations 	
Thu 23 Sep	 Linear Ordinary Differential Operators 	101 – 116
	 Operators, domains and boundary conditions 	
	 Adjoint operators and boundary conditions 	
	 Self-adjoint problems and extensions 	
	 Introduction to the eigenvalue problem 	
Tue 28 Sep	 Completeness of Eigenfunctions 	117 – 131
	 Problem set III due, problem set IV available 	
	• Ex. 3.3 (99), 4.2 (108), 4.4 (111)	
	 Pr. 3.4 (99), 4.13 (136) 	
	 Operators with discrete spectrum 	
	 Rayleigh–Ritz and other methods 	
	 Operators with continuous spectrum 	
	 Generalized eigenfunctions 	
Thu 30 Sep	 Introduction to Green Functions 	140 – 150
	 The Fredholm alternative 	
	 Theory and methods of Green functions 	
	 Two-point and initial-value problems 	
	 The modified Green function 	
Tue 05 Oct	 Applications of Green Functions 	150 – 159
	 Hermiticity and Lagrange's identity 	
	Eigenfunction expansions	

Tue 05 Oct	Applications of Green Functions	150 – 159
<u>Date</u>	Lecture Tepieniticity and Lagrange's identity	<u>Reading</u>
	 Eigenfunction expansions 	
	 Inhomogeneous boundary conditions 	
	 Causality and analyticity 	
Thu 07 Oct	 Analytic Properties of Green Functions 	155 – 167
	 Problem set IV due, problem set V available 	
	 Ex. 5.1 (167), 5.2 (168), 5.5 (169), 5.7 (171) 	
	 Pr. 5.9 (172) 	
	 Causality and analyticity revisited 	
	 Plemelj formulae and principal values 	
	 Resolvent operators and Green functions 	
	 Locality and Green functions 	
Tue 12 Oct	 Introduction to Partial Differential Equations 	174 – 185
	 Classification of partial differential equations 	
	 Characteristics and Cauchy data 	
	First-order equations	
	The wave equation in two dimensions	
Thu 14 Oct	• The Wave Equation	181 – 195
	The d'Alambert and Fourier solutions	
	I he retarded Green function	
	Waves in odd vs. even dimensions	
	Huygens' principle	100 001
Tue 19 Oct	Ine Heat Equation	196 – 201
	Problem set V due, problem set VI available	
	• EX. 6.2 (184), 6.3 (185), 6.15 (225) = $P_{r} = 0.40 (004) = 0.44 (004)$	
	• $P1. 0.13 (224), 0.14 (224)$	
	The neurod groop function	
	 The causal green function Dubamol's principlo 	
	The Schrödinger equation	
Thu 21 Oct	The Lanlace Equation	
	 The Poisson and Laplace equations 	201 - 213
	 Dirichlet and Neumann problems 	
	Existence and uniqueness of solutions	
	 Separation of variables 	
Tue 26 Oct	The Poisson and Helmholtz Equations	213 – 223
Tue 20 Oct	Figenfunction expansions and Green functions	210 220
	 Boundary value problems 	
	 Method of images 	
	Monochromatic waves	

<u>Date</u>	Lecture Topeia od of images	<u>Reading</u>
	 Monochromatic waves 	
Thu 28 Oct	 Dispersion and Resonance 	231 – 246
	• Problem set VI due, problem set VII available	
	 Ex. 6.9 (218), 6.10 (219), 6.16 (225), 	
	6.17 (226), 7.3 (260)	
	 Pr. 6.12 (223), 7.3 (260) 	
	 Dispersive waves 	
	 Phase vs. group velocity 	
	 Wakes and rays 	
	 Rayleigh's equation 	
Tue 02 Nov	 Spherical Harmonics 	264 – 278
	 Calculus in curvilinear coordinates 	
	 Separation of variables in spherical coordinates 	
	 Legendre polynomials 	
	 General spherical harmonics 	
Thu 04 Nov	 Cylindrical Bessel Functions 	278 – 293
	 Bessel's equation and its solutions 	
	 Recursion relations and other identities 	
	 Orthogonality and Hankel transforms 	
	 Modified Bessel functions 	
Tue 09 Nov	 Spherical Bessel Functions 	294 – 305
	 Problem set VII due, problem set VIII available 	
	• Ex. 8.1 (274), 8.3 (287), 8.5 (303),	
	8.6 (303), 8.11 (307), 8.14 (310)	
	 The spherical Bessel equation 	
	 Recursion relations and other identities 	
	 Singular endpoints and regularity conditions 	
	Weyl's theorem	
Thu 11 Nov	 (No Class due to Veterans' Day) 	
Tue 16 Nov	 Integral Transforms 	311 – 321
	 Introduction to integral equations 	
	Fourier transforms	
	 Laplace transforms 	
	Radon transforms	
Thu 18 Nov	 Exact Solution of Integral Equations 	321 – 332
_	 Separable kernels and the eigenvalue problem 	
	 Inhomogeneous problems 	
	 Singular integral equations and principal parts 	
	Wiener–Hopf equations	
Tue 23 Nov	Approximate Methods for Integral Equations	332 – 342

-

<u>Date</u>	Lecture Tஹ்ச்சுer-Hopf equations	<u>Reading</u>
Tue 23 Nov	 Approximate Methods for Integral Equations 	332 – 342
	• Problem set VIII due, problem set IX available	
	 Ex. 9.2 (343), 9.3 (343), 9.5 (344), 9.7 (345), 9.9 (346) 	
	 Integral equations and functional analysis 	
	 Geometry of operators in Hilbert space 	
	 The Born approximation 	
	 The Fredholm series 	
Thu 25 Nov	 (No Class due to Thanksgiving Recess) 	
Tue 30 Nov	 Non-Linear Waves and Solitons 	246 – 259
	 Non-linear wave phenomena 	
	Shocks	
	Weak solutions	
	Solitons	
Thu 02 Dec	Final Exam	
	• Problem set IX due, final exam available	
Tue 07 Dec	Final Exam	
	Final exam due	