Date	Lecture Topic	Reading
Tue 24 Aug	- Graduate Mathematical Physics - Linear Algebra: Theory - Vectors, bases and components - Linear maps and dual vectors - Inner products and adjoint operators - Direct sums and quotients	744-756
Thu 26 Aug	- Linear Algebra: Applications - Problem set I available - Ex. A. 2 (747), A.3-5 (753), A. 8 (756), A. 9 (762), A. 15 (770) - Linear systems of equations - Matrices and determinants - Eigenvalues and diagonalization - Jordan normal form	757-772
Tue 31 Aug	- The Calculus of Variations - Functionals and their variations - The Euler-Lagrange equations - Lagrangian mechanics - Noether's theorem and gauge theory	1-17
Thu 02 Sep	- Fields and Continuum Mechanics - Many degrees of freedom - Continuum limit and mechanics of media - Maxwell theory and gauge fields - Fluid mechanics	$17-26$ ©
Tue 07 Sep	- Advanced Topics in Variational Calculus - Problem set I due, problem set II available - Ex. 1.2 (38), 1.8 (43), 1.13 (46) - Pr. 1.6 (41), 1.12 (45) - Problems with variable endpoints - Constraints and Lagrange multipliers - The second variation - Rayleigh-Ritz problems	27-38
Thu 09 Sep	- Function Spaces - Functions as vectors - Convergence and Hilbert space - Completeness and Hilbert bases	50-62

Date	Lecture Topic	Reading
	- Best approximation and Parseval's theorem	
Tue 14 Sep	- Fourier Series and Transforms - Fourier series and their limits - Fourier transforms - Gibbs' phenomenon - The Poisson summation formula	779-795
Thu 16 Sep	- Linear Operators and Distributions - Problem set II due, problem set III available - Ex. B. 1 (790), B. 3 (790), B. 6 (792), 2.3 (64), 2.5 (65), 2.13 (78), 2.20-22 (84) - Orthogonal polynomials - Linear operators - Test functions and distributions - Calculus with distributions	62-75
Tue 21 Sep	- Linear Ordinary Differential Equations - Existence and uniqueness of solutions - Linear independence and the Wronskian - Normal form and singular points - Solution of inhomogeneous equations	86-98
Thu 23 Sep	- Linear Ordinary Differential Operators - Operators, domains and boundary conditions - Adjoint operators and boundary conditions - Self-adjoint problems and extensions - Introduction to the eigenvalue problem	101-116
Tue 28 Sep	- Completeness of Eigenfunctions - Problem set III due, problem set IV available - Ex. 3.3 (99), 4.2 (108), 4.4 (111) - Pr. 3.4 (99), 4.13 (136) - Operators with discrete spectrum - Rayleigh-Ritz and other methods - Operators with continuous spectrum - Generalized eigenfunctions	117-131
Thu 30 Sep	- Introduction to Green Functions - The Fredholm alternative - Theory and methods of Green functions - Two-point and initial-value problems - The modified Green function	140-150
Tue 05 Oct	- Applications of Green Functions - Hermiticity and Lagrange's identity	150-159

Date	Lecture Topic	Reading
	- Eigenfunction expansions - Inhomogeneous boundary conditions - Causality and analyticity	
Thu 07 Oct	- Analytic Properties of Green Functions - Problem set IV due, problem set V available - Ex. 5.1 (167), 5.2 (168), 5.5 (169), 5.7 (171) - Pr. 5.9 (172) - Causality and analyticity revisited - Plemelj formulae and principal values - Resolvent operators and Green functions - Locality and Green functions	155-167
Tue 12 Oct	- Introduction to Partial Differential Equations - Classification of partial differential equations - Characteristics and Cauchy data - First-order equations - The wave equation in two dimensions	174-185
Thu 14 Oct	- The Wave Equation - The d'Alambert and Fourier solutions - The retarded Green function - Waves in odd vs. even dimensions - Huygens' principle	181-195
Tue 19 Oct	- The Heat Equation - Problem set V due, problem set VI available - Ex. 6.2 (184), 6.3 (185), 6.15 (225) - Pr. 6.13 (224), 6.14 (224) - The heat kernel - The causal green function - Duhamel's principle - The Schrödinger equation	196-201
Thu 21 Oct	- The Laplace Equation - The Poisson and Laplace equations - Dirichlet and Neumann problems - Existence and uniqueness of solutions - Separation of variables	201-213
Tue 26 Oct	- The Poisson and Helmholtz Equations - Eigenfunction expansions and Green functions - Boundary value problems - Method of images	213-223

Date	Lecture Topic	Reading
	- Monochromatic waves	
Thu 28 Oct	Dispersion and Resonance - Problem set VI due, problem set VII available - Ex. 6.9 (218), 6.10 (219), 6.16 (225), 6.17 (226), 7.3 (260) - Pr. 6.12 (223), 7.3 (260) - Dispersive waves - Phase vs. group velocity - Wakes and rays - Rayleigh's equation	231-246
Tue 02 Nov	- Spherical Harmonics - Calculus in curvilinear coordinates - Separation of variables in spherical coordinates - Legendre polynomials - General spherical harmonics	264-278
Thu 04 Nov	- Cylindrical Bessel Functions - Bessel's equation and its solutions - Recursion relations and other identities - Orthogonality and Hankel transforms - Modified Bessel functions	278-293
Tue 09 Nov	- Spherical Bessel Functions - Problem set VII due, problem set VIII available - Ex. 8.1 (274), 8.3 (287), 8.5 (303), 8.6 (303), 8.11 (307), 8.14 (310) - The spherical Bessel equation - Recursion relations and other identities - Singular endpoints and regularity conditions - Weyl's theorem	294-305
Thu 11 Nov	- (No Class due to Veterans' Day)	
Tue 16 Nov	- Integral Transforms - Introduction to integral equations - Fourier transforms - Laplace transforms - Radon transforms	311-321
Thu 18 Nov	- Exact Solution of Integral Equations - Separable kernels and the eigenvalue problem - Inhomogeneous problems - Singular integral equations and principal parts - Wiener-Hopf equations	321-332

Date	Lecture Topic	Reading
Tue 23 Nov	- Approximate Methods for Integral Equations - Problem set VIII due, problem set IX available - Ex. 9.2 (343), 9.3 (343), 9.5 (344), 9.7 (345), 9.9 (346) - Integral equations and functional analysis - Geometry of operators in Hilbert space - The Born approximation - The Fredholm series	332-342
Thu 25 Nov	- (No Class due to Thanksgiving Recess)	
Tue 30 Nov	- Non-Linear Waves and Solitons - Non-linear wave phenomena - Shocks - Weak solutions - Solitons	246-259
Thu 02 Dec	- Final Exam	
	- Problem set IX due, final exam available	
Tue 07 Dec	- Final Exam	

