| <u>Topic</u> | <u>Reading</u> | |---|----------------------------| | I Special relativity (4 lectures) | | | 1 Historical origins, postulates and spacetime | § 2.1 – .13 (14) | | The tension between Newton and Maxwell | | | Postulates and assumptions of special relativity | | | Simultaneity and spacetime | | | Relativistic kinematics | § 3.1 – .6, .10 (10) | | The Minkowski metric | | | Lorentz transformations | | | Kinematic effects | | | Relativistic dynamics | § 3.7; 4.1 – .5 (12) | | Accelerated motion | | | Scalar and vector forces | | | Energy and momentum | | | 4 Non-Inertial motion and the equivalence principle | § 3.8 – .9; 9.1 – .4 (14) | | Uniformly accelerated observers | | | Machian theories and equivalence | | | What is gravity? | | | II A crash course on Riemannian geometry (3 lectures) | | | 1 Differentiable manifolds | § 5.1 – .9; 6.1, .2 (17) | | Manifolds and smooth functions | | | Vector and tensor fields | | | Mappings of manifolds and the Lie derivative | | | 2 Riemannian geometry | § 6.3 – .12; 7.7 (18) | | Affine connections and curvature | • | | Metric geometry | | | Isometries | | | 3 Integration on manifolds | § 7.1 – .4 (6) + | | Differential forms and integrals | | | Volume and the Hodge dual | | | The generalized Stokes theorem | | | III Foundations of general relativity (6 lectures) | | | 1 Minkowski spacetime as a particular gravitational field | § 7.5 – .6; 8.1 – .8 (18) | | A geometric perspective on special relativity | | | Geodesics and mechanics | | | Symmetry and conservation laws | | | Gravity as geometry | § 9.5 – .7; 10.1 – .7 (13) | | Tidal forces and geodesic deviation | | • The Einstein field equation | <u>Topic</u> | Reading | |---|-----------------------------| | Uniqueness of Einstein's theory | | | 3 Gravitational sources | § 12.1 – .8 (11) | | Matter sources | | | Einstein–Maxwell theory | | | Energy conditions | | | 4 The nature of the field equations | § 13.1 – .7 (11) | | Constraints and gauge | | | The Cauchy problem | | | The cosmological constant | | | 5 Motion in curved spacetime | § 12.9, .10; 20.1, .2 (8) + | | The Newtonian limit | | | The post-Minkowski expansion | | | Does the field equation predict source motion? | | | 6 *Action principles for gravity | § 11.1 – .8 (9) | | The Einstein–Hilbert action | | | The Palatini action | | | Coordinate invariance | | | IV Isolated gravitational sources (6 lectures) | | | 1 The Schwarzschild solution | § 14.1 – .6 (10) | | Stationary and static metrics | | | Spherical symmetry | | | Solving the Einstein equation | | | 2 Signatures of relativistic gravity | § 15.1 – .5 (13) | | Perihelion advance | | | Deflection of light | | | Gravitational red shift | | | 3 The Schwarzschild black hole | § 16.1 – .8 (12) | | Singularities of the Schwarzschild solution | | | Eddington–Finkelstein coordinates | | | The event horizon | | | 4 Global structure of the Schwarzschild solution | § 17.1 – .5 (9) | | The Kruskal extension | | | Conformal compactification | | | Penrose diagrams The Control of o | | | • 5 *Spherical stars | + | | Interior solutions in spherical symmetry | | | Hydrostatic equilibrium The Chandrasekhar limit | | | The Chandrasekhar limit Sections black balos | 8 10 2 10 (12) | | 6 *Rotating black holes The Kerr metric | § 19.3 – .10 (12) | | Spacetime structure | | | • Opacetime structure | | | <u>Topic</u> | Reading | |--|-------------------------------| | Maximal rotation 7 *General features of black holes What is a black hole? Singularity and uniqueness theorems Quantum effects | § 18.1 – .5; 19.11 – .12 (13) | | V Gravitational radiation (5 lectures) 1 Plane gravitational waves Plane waves in linearized gravity Exact plane-wave solutions Detecting gravitational waves | § 20.3 – .5, .9 (12) | | Weak gravitational waves from compact sources Radiation gauge in linearized gravity Sources of gravitational radiation The quadrupole formula | + | | 3 Asymptotic description of gravitational radiation Radiation coordinates Characteristic formulation of general relativity Bondi news | § 21.1 – .6 (10) | | 4 *Local characterization of gravitational radiation Algebraic classification of metrics The peeling-off theorem Null congruences and propagation | § 6.13; 21.7 – .9 (5) + | | *Radiation reaction in general relativity The Dirac approach to radiation reaction Second-order perturbation theory Source motion and integrability | + | | VI Relativistic cosmology (4 lectures) 1 Homogeneous and isotropic spacetimes The cosmological principle Homogeneity and isotropy Spaces of constant curvature | § 22.1 – .8 (15) | | 2 Basic cosmological phenomenology The Friedmann equation Observables in cosmology Hubble's law | § 22.9 – .12 (8) | | 3 Simple cosmological models The role of the cosmological constant Classification of Friedmann solutions Dark matter and dark energy | § 23.1 – .10 (13) | | 4 *Global structure of cosmological spacetimes Cosmological horizons | § 23.12 – .16 (11) + | Topic Conformal structure of cosmological solutions Asymptotically simple spacetimes Symmetry reduction of the action Canonical quantization • Relation to quantum gravity